ROHM(罗姆)SiC(碳化硅)MOSFET选型指南(英文)
●SiC MOSFET消除了开关过程中的尾电流,从而加快了操作速度,降低了开关损耗,提高了稳定性。较低的导通电阻和紧凑的芯片尺寸会降低电容和栅极电荷。此外,SiC具有优异的材料性能,例如最小的ON电阻增加,与硅(Si)器件相比,SiC可以实现更大的封装小型化和节能,其中ON电阻可以随着温度的升高而增加一倍以上
●ROHM';第四代SiC MOSFET:
■最新的第4代SiC MOSFET在不牺牲短路耐受时间的情况下,提供业界领先的低导通电阻。其他功能包括低开关损耗和支持15V栅源电压,有助于进一步节省设备功率
选型目录
- |
- +1 赞 0
- 收藏
- 评论 0
本文内容由ROHM品牌授权世强硬创平台转载,旨在分享知识与信息,如有内容侵权或者其他违规问题,请及时与我们联系,我们将在核实情况后尽快删除或提供适当的版权信息。对于通过本网站上传或发布的内容,世强硬创平台不承担任何版权责任。
相关推荐
ROHM(罗姆) SiC(碳化硅)MOSFET选型指南(中文)
SiC MOSFET原理上在开关过程中不会产生拖尾尾电流,可高速运行且开关损耗低。低导通电阻和小型芯片尺寸造就较低的电容和栅极电荷。此外,SiC还具有如导通电阻增加量很小的优异的材料属性,并且有比导通电阻可能随着温度的升高而上升2倍以上的硅(Si)器件更优异的封装微型化和节能的优点。
ROHM - SIC场效应晶体管,SIC MOSFET,SCT3160KL,SCT4062KR,SCT3030KLHR,SCT4013DE,SCT3080AW7,SCT2450KE,SCT3160KW7,SCT2H12NZ,SCT4062KW7HR,SCT2450KEHR,SCT4013DR,SCT3060ALHR,SCT3040KRHR,SCT3060ARHR,SCT3040KLHR,SCT4036KEHR,SCT4045DRHR,SCT3022KLHR,SCT2160KE,SCT3080KW7,SCT3017ALHR,SCT3022AL,SCT3080ALHR,SCT3060AR,SCT3105KLHR,SCT4036KR,SCT3060AL,SCT4026DEHR,SCT4062KRHR,SCT3040KR,SCT2080KE,SCT3080KR,SCT3105KRHR,SCT3120AL,SCT4013DW7,SCT3030KL,SCT4062KWAHR,SCT4062KE,SCT3080ARHR,SCT4036KW7,SCT2280KEHR,SCT3120ALHR,SCT2280KE,SCT4062KWA,SCT3030AR,SCT3030AL,SCT3030AW7,SCT4036KRHR,SCT4045DEHR,SCT3120AW7,SCT3040KL,SCT3105KW7,SCT2080KEHR,SCT4018KW7,SCT4045DWA,SCT3080KL,SCT3030ALHR,SCT4062KW7,SCT3040KW7,SCT3022ALHR,SCT3030ARHR,SCT4045DW7,SCT3017AL,SCT4036KE,SCT4018KE,SCT4045DE,SCT4026DW7,SCT4062KEHR,SCT3080AR,SCT4026DW7HR,SCT4026DE,SCT4026DWA,SCT3160KLHR,SCT3080AL,SCT4045DW7HR,SCT4045DR,SCT2160KEHR,SCT3022KL,SCT4018KR,SCT4026DR,SCT4045DWAHR,SCT3105KL,SCT3160KW7HR,SCT3105KR,SCT3080KLHR,SCT3060AW7,SCT4026DRHR,SCT3080KRHR,SCT4026DWAHR
SiC MOSFET损耗计算方法:开关波形的测量方法
关于根据开关波形计算功率损耗的方法,本文中ROHM将为大家介绍SiC MOSFET开关波形的测量方法。近年来,一些示波器已经具备可以自动计算并显示所观测波形的功率损耗的功能,但如果没有该功能,就需要通过测得的波形来计算损耗了。为此,需要了解具体的测量方法和波形。
B-011。3级NPC-T逆变器Pout=10kW Rohm解决方案模拟器原理图信息
本资料介绍了ROHM公司的一款3级NPC逆变器解决方案,主要针对10kW输出功率的应用。资料中详细列出了可选用的SiC MOSFET器件,包括其产品编号、特性和参数。此外,还提供了仿真波形图和如何更改器件的说明,以及损失计算模型的相关信息。资料强调了在使用ROHM产品时的注意事项,包括验证最新规格、适用于特定应用前的咨询以及出口法规遵守等。
ROHM - SIC场效应晶体管,SIC MOSFET,SCT3160KL,SCT2280KE,SCT4013DE,SCT3030AL,SCT2450KE,SCT2H12NZ,SCT3040KL,SCT3080KL,SCT3017AL,SCT4036KE,SCT2160KE,SCT4018KE,SCT2120AF,SCT4045DE,SCT3022AL,SCT4026DE,SCT3060AL,SCT3080AL,SCT3022KL,SCT2080KE,SCT3120AL,SCT3030KL,SCT3105KL,SCT2750NY,SCT4062KE
ROHM提供支持电力电子仿真工具PSIM™的第4代SiC MOSFET仿真模型
全球知名半导体制造商ROHM(总部位于日本京都市)开始提供支持电力电子仿真工具PSIM™的第4代SiC MOSFET仿真模型。该模型可在Altair® US公司开发的电力电子和电机控制用的电路仿真工具PSIM™中使用。设计人员可从ROHM官网下载模型文件,轻松进行系统级评估。这一进展使得在更广泛的产业领域中进行高效设计和评估成为可能,并能进一步推动功率元器件的使用。
SiC MOSFET损耗计算方法:通过波形的线性近似分割来计算损耗的方法
本文ROHM将介绍根据在上一篇文章(《SiC MOSFET损耗计算方法:开关波形的测量方法》)中测得的开关波形,使用线性近似法来计算功率损耗的方法。
ROHM‘s 4th Generation SiC MOSFET Bare Chips Adopted in Three EV Models of ZEEKR from Geely
ROHM has announced the adoption of power modules equipped with 4th generation SiC MOSFET bare chips for the traction inverters in three models of ZEEKR EV brand from Geely, extending the cruising range and improves performance.
【经验】以SIC MOSFET SCT3040KR为例说明SiC MOS应用中Vds关断尖峰的应对策略
在SiC MOS应用中,通常在mos关断过程中存在较大的Vds尖峰,主要原因在Turn ON 时流过的电流的能量储存在线路和基板布线的寄生电感中,并与开关元件的寄生电容共振所产生的。本文将以ROHM SiC MOSFET SCT3040KR为例说明SiC MOS应用中Vds关断尖峰的应对策略。
【经验】简析Sic MOSFET相对于IGBT器件的三个优势:低导通损耗、低开关损耗、高驱动电压条件下更低导通电阻
ROHM的SCT2080KEHR是1200V,导通电阻是80mΩ,电流40A,封装TO-247-3的车规级SiC MOSFET,驱动电压范围VGSS在 -6V~+22V,驱动范围比较窄。本文以CT2080KEHR为例,对比市场通用的1200V/40A的TO-247-3的IGBT单管,说明Sic MOSFET在导通损耗和开关损耗上更具优势。
罗姆第4代SiC MOSFET裸芯片批量应用于吉利集团电动汽车品牌“极氪”3种主力车型
日前,搭载了罗姆第4代SiC MOSFET裸芯片的功率模块成功应用于“极氪”电动汽车3种车型的主机逆变器上,有助于延长车辆续航距离以及提高性能。
ROHM采用SiC MOSFET开发Trans-link交错型逆变器,实现5kW时功率转换效率99%以上
罗姆(ROHM)采用了发挥碳化硅(SiC)MOSFET高频特性的Trans-link交错型逆变电路、实现了5kW时的功率转换效率达到99%以上。在该电路拓扑中,平滑电抗器的电感量可以减小。
【经验】以SCT2160KEC为例说明SiC MOSFET误开通的现象和规避方法
本文主要介绍SiC MOSFET误开通的现象和规避方法。想要了解SiC MOSFET误开通,首先得了解Sic MOSFET的相关参数。本文中以ROHM的SCT2160KEC为例进行介绍,这是一款1200V/160mΩ的SiC MOSFET。
ROHM 4th Gen SiC MOSFET Simulation Models for PSIM™ Now Available
ROHM has begun offering 4th Gen SiC MOSFET simulation models compatible with PSIM™, a circuit simulator designed for power electronics and motor drive developed by Altair®. Designers can now easily download model files to perform system-level evaluations, allowing for efficient design and evaluation across a wire range of industrial sectors, further promoting the use of power devices.
【经验】如何通过增加栅极电容的方式减缓SiC MOSFET 的米勒效应
SiC MOSFET 同Si 基MOSFET和IGBT一样,由于存在米勒电容,都会有米勒效应的存在。由于SiC材料所带来的优势,SiC MOSFET可以工作在更高开关频率下,这样就会面临更严峻的误触发现象。所以在驱动电路设计中需要增加相关设计,使之能够较为有效地避免误触发。本文将主要介绍增加栅极电容的方式。
在EV应用中使用第4代SiC MOSFET的效果:图腾柱PFC实机评估
本文将介绍在相同的BEV电源架构的组成模块之一—OBC的双向图腾柱PFC中使用第4代SiC MOSFET时的实验结果。图腾柱PFC是作为可提高效率的PFC转换器在近年来备受关注的拓扑。另外,为了微电网系统更加稳定,并促进供需平衡,全球范围都在研究V2G(Vehicle To Grid),双向工作也变得越发重要。
SiC MOSFET:通过波形的线性近似分割来计算损耗的方法
本文的关键要点:可以在线性近似有效范围内对所测得的波形进行分割,并使用示例公式进行损耗的近似计算;MOSFET开关工作时的总功率损耗是开关损耗和导通损耗之和。
电子商城
现货市场
登录 | 立即注册
提交评论