Machine Learning Benchmarks Compare Energy Consumption
Machine learning (ML) is becoming increasingly popular in many applications, ranging from miniature Internet of Things (IoT) devices to massive data centers. For various reasons like real-time expectations, must-have offline operation, battery-saving purposes, or even security and privacy the most optimal is to run ML algorithms and data processing right at the edge where the data is being generated. These low-power IoT devices could be embedded microcontrollers, wireless SoCs, or intelligence integrated into a sensor device.
To achieve this, semiconductor product manufacturers need small, low-power processors or microcontrollers enable to run the necessary ML software in an efficient way, sometimes supported with HW acceleration built into the chip. Evaluating the performance of a particular device is not straightforward, as its effectiveness in an ML application is more important than raw number-crunching.
To help, MLCommons™, an open engineering consortium, has developed three benchmarking suites to compare ML offerings from different vendors. MLCommons focuses on collaborative engineering work to benefit the machine learning industry through benchmarks, metrics, public datasets, and best practices.
These benchmark suites, called MLPerf™, measure the performance of ML systems at inference when applying a trained ML model to new data. The benchmarks also optionally measure the energy used to complete the inference task. As the benchmarks are open source and peer-reviewed, they provide an objective, impartial test of performance and energy efficiency.
Of the three benchmarks available from MLCommons, SILICON LABS has submitted a solution for the MLPerf Tiny suite. MLPerf Tiny is aimed at the smallest devices with low power consumption, typically used in deeply embedded applications such as the IoT or intelligent sensing.
The Benchmarking Tests
MLCommons recently conducted a round of its MLPerf Tiny 1.0 benchmarking, and 16 different systems were submitted for analysis by different vendors.
Customers typically look for more than raw performance in these ultra-low-power ML systems. They also focus on power consumption and often prioritize the energy a system uses to perform a task as the most important metric, especially in the case of aiming to create battery-powered applications.
For representative testing, the benchmarks included ML models for five different scenarios (see Table 1): keyword spotting, visual wake words, image classification, and anomaly detection. Each scenario uses a specific dataset and ML model to simulate real-world applications. The benchmark suites are designed to test the hardware, software, and machine learning models used. In each case, the testing measured the latency of a single inference to show how quickly the task was completed. The test could also optionally measure the energy used.
The Silicon Labs System Benchmarked
Silicon Labs submitted its EFR32MG24 Multiprotocol Wireless System on Chip (SoC) for benchmarking. The SoC includes one Arm Cortex®-M33 core (78MHz, 1.5MB of Flash / 256kB of RAM) and a Silicon Labs AI/ML accelerator subsystem. It supports multiple 2.4GHz RF protocols, including Bluetooth Low Energy (BLE), Bluetooth mesh, Matter, OpenThread, and Zigbee. It’s ideal for mesh IoT wireless applications, such as smart homes, lighting, and building automation. This compact development platform provides a simple, time-saving path for AI/ ML development.
The SoC was running TensorFlowLite for Microcontrollers software, which enables ML inference models to run on microcontrollers and other low-power devices with small memories. It used optimized neural network kernels from the CMSIS-NN library in the Silicon Labs Gecko Software Development Kit (SDK).
The Results
The MLPerf™ Tiny v1.0 benchmark results highlight the efficiency of the on-chip accelerator in Silicon Labs’ EFR32MG24 platform. Inferencing calculations are offloaded from the main CPU, allowing it to execute other tasks or even be placed in sleep mode to provide further power savings.
It’s essential to meet the growing needs of AI/ML-enhanced low-power wireless IoT solutions, allowing devices to stay in the field for up to ten years on a single coin-cell battery. These latest results show an improvement of 1.5 to 2x increase in speed and a 40-80% reduction in energy consumption compared to a selection of other benchmarked AI/ML models from the previous Tiny v0.7 results.
As ML becomes more widely used in embedded IoT applications, this ability to run inferences with low power consumption is essential – and will enable product designers to apply ML in new use cases and different devices.
- |
- +1 赞 0
- 收藏
- 评论 0
本文由玄子转载自Silicon Labs Blogs,原文标题为:Machine Learning Benchmarks Compare Energy Consumption,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
相关推荐
Which AI models can run at the Very Edge
This paper mainly introduces how Greenwaves Technologies fills the gap that AI agents technology is too complex to run on current edge platforms in real time, becoming a SoC platform that brings complex AI agents to edge devices and is tailored for edge AI.
【应用】地平线AI SoC芯片X3ME00IBGTMB-H用于3D相机,集成四核Cortex A53 CPU
3D相机应用领域越来越广泛,除了常见的3D影片之外,还可以应用于物流自动化、机器人视觉、障碍检测等方面。3D相机是有两个镜头的,分别是用于拍摄场景和测量自身与场景内物体之间的距离。镜头获取信息需要一个强大芯片来处理,本文介绍一款SOC可用于3D相机上。
SILICON LABS ZIGBEE 无线 Gecko SoC选型表
EFR32MG无线 Gecko SoC 是在 IoT 设备上实现节能多协议连网的理想之选。芯片解决方案结合了 76.8MHz ARM和高性能 2.4GHz 无线电,旨在为 IoT连接应用提供行业领先的节无线 SoC。
产品型号
|
品类
|
Protocol Stack
|
Frequency Band @ Max TX Power(GHz@dBm)
|
Flash(kB)
|
RAM(kB)
|
GPIO(个数)
|
Operating Temperature(℃)
|
Storage Temperature(℃)
|
Pin Count
|
AVDD Supply Voltage(V)
|
EFR32MG12P433F1024GL125-C
|
Gecko Multi-Protocol Wireless SoC
|
Bluetooth LE Zigbee Thread Proprietary, Wi-SUN
|
2.4GHz @ 19dBm, Sub-GHz @ 20dBm
|
1024kB
|
256kB
|
65
|
-40℃~85℃
|
-50℃~150℃
|
BGA125
|
1.8V~3.8V
|
选型表 - SILICON LABS 立即选型
【应用】地平线新一代AIoT AI SOC X3ME00IBGTMB-H成功用于AI分析盒子,提供5TOPS的算力
在盒子的主控方面,客户采用的是地平线的新一代AIoT AI SOC 旭日3系列X3ME00IBGTMB-H,这是地平线针对 AIoT 场景,推出的新一代低功耗、高性能的智能芯片,集成了地平线最先进的伯努利2.0 架构引擎( BPU® ),可提供5TOPS的算力。
SILICON LABS Matter 无线SoC选型表
EFR32MG24 无线 SoC 是使用 Matter、OpenThread 和 Zigbee 进行网状物联网无线连接的理想选择
产品型号
|
品类
|
Protocol Stack
|
MAX TX Power (dBm)
|
Flash(kB)
|
RAM(kB)
|
GPIO(个数)
|
Secure Vault
|
IADC High-Speed/High-Accuracy
|
Multi Vector Processor
|
Max CPU Speed(MHz)
|
Operating Temperature(℃)
|
Storage Temperature(℃)
|
Pin Count
|
AVDD Supply Voltage(V)
|
EFR32MG24B310F1536IM48-B
|
Wireless SoC
|
Matter,Zigbee,Thread,Bluetooth 5.3
|
10dBm
|
1536kB
|
256kB
|
28
|
High
|
IADC High-Speed/High-Accuracy
|
Multi Vector Processor
|
78.0MHz
|
-40℃~125℃
|
-50℃~150℃
|
QFN48
|
1.71V~3.8V
|
选型表 - SILICON LABS 立即选型
AI融合物联网大势所趋,ML语音识别和手势控制应用分享
芯科科技作为智能、安全物联网无线连接领域的开拓者,正在致力于将AI/ML带到边缘。我们对创新的承诺导致了开创性的解决方案,它赋予资源受限的设备如MCU具备更丰富的智能功能。
【应用】地平线推出基于AI SoC X3M的扫地机方案,提供配套TROS操作系统和AI算法
地平线推出基于Sunrise®旭日芯片的扫地机方案,提供芯片+操作系统+算法的完整解决方案,实现更智能、更稳定、更主动的智能扫地机应用。
【应用】算力高达5TOPS的SOC X3ME00IBGTMB-H用于双目AI相机设计,满足输入图像的图像信号处理要求
某客户做一款双目AI相机,需要跑自己的识别算法,用于识别一些物体,算法是自研的,视频输出部分要求分辨率达到4K级别。在相机处理器上需要一款有一定算力和多路视频处理能力的芯片,客户采用地平线的旭日3系列AI SOC X3ME00IBGTMB-H,该款芯片性能强大,算力和视频处理能力均能满足需求。
EFR32BG26 Wireless Gecko SoC Family Data Short
型号- EFR32BG26B320F2048IM68-B,EFR32BG26B010F2048IM68-AR,EFR32BG26B320F2048IM48-B,EFR32BG26B310F2048IM48-B,EFR32BG26B310F1024IM68-B,EFR32BG26B310F2048IM68-B,EFR32BG26B310F2048IL136-B,EFR32BG26B320F1024IM68-B,EFR32BG26,EFR32BG26B510F3200IL136-B,EFR32BG26B510F3200IM48-B,EFR32BG26B510F3200IM68-B,EFR32BG26B310F1024IL136-B
【应用】地平线AI SOC芯片X3M系列助力边缘计算盒子应用,算力可达5Tops
本文将介绍地平线X3M系列AI SOC芯片,可应用于边缘计算盒子,实现视觉部分的算法。镜头模组将采集到的信息传送给X3M芯片,芯片通过算法,实现视觉部分的识别,如人脸识别,手势识别,火焰识别的动作,然后将信息通过接口进行传输。
【经验】Matter入门指导3:基于GSDK创建Matter - SoC Lighting over Thread工程
本文主要介绍使用EFR32MG24 Breakout Board,基于GSDK创建Matter - SoC Lighting over Thread工程的方法,我们后面会使用这个工程的固件来做Matter over Thread灯设备的控制实验。
AI看奥运 | 从巴黎奥运会看人工智能的应用和发展,美格智能高算力AI模组为端侧AI提供通用智算底座
2024巴黎奥运会火热空前,从开幕式到金牌争夺战,本届奥运会的关注热度持续攀升。与往届不同的是低延时、高算力的AI技术以亮眼表现出现在大众的视野,为AI技术的广泛应用和创新发展奠定了坚实的基础。美格智能持续投入高算力产品及AI技术在各行各业的应用落地,在业内率先推出了高算力AI模组、SoC阵列服务器解决方案等各类算力产品及解决方案。
EFR32MG21 Multiprotocol Wireless SoC Family Data Sheet
型号- EFR32MG21A020F512IM32-B,EFR32MG21B020F512IM32-D,EFR32MG21B020F512IM32-B,EFR32MG21A010F512IM32-B,EFR32MG21B010F512IM32-B,EFR32MG21A010F768IM32-D,EFR32MG21B020F1024IM32-B,EFR32MG21B010F1024IM32-B,EFR32MG21B010F768IM32-D,EFR32MG21B010F768IM32-B,EFR32MG21B010F1024IM32-D,EFR32MG21A010F768IM32-B,EFR32MG21B020F1024IM32-D,EFR32MG21B010F512IM32-D,EFR32MG21,EFR32MG21A010F512IM32-D,EFR32MG21B020F768IM32-B,EFR32MG21A020F768IM32-D,EFR32MG21B020F768IM32-D,EFR32MG21A020F768IM32-B,EFR32MG21A020F512IM32-D,EFR32MG21A010F1024IM32-B,EFR32MG21A020F1024IM32-D,EFR32MG21A020F1024IM32-B,EFR32MG21A010F1024IM32-D
EFR32BG24 Wireless SoC Family Data Sheet
型号- EFR32BG24B110F1536IM48-B,EFR32BG24B210F1024IM48-B,EFR32BG24A020F1024IM40-B,EFR32XG24,EFR32BG24A010F1024IM48-B,EFR32BG24A020F1024IM48-B,EFR32BG24 FAMILY,EFR32BG24B220F1024IM48-B,EFR32BG24B020F1536IM48-BR,EFR32,EFR32BG24,EFR32BG24A010F1024IM40-B
与智能同行 - 借力微型、内置ML加速器的芯科科技无线SoC实现医疗电子多样功能!
针对医疗电子控制器当前的应用现状和未来的发展方向,Silicon Labs无线产品营销高级经理Brian Blum先生近期参与大比特(Big-Bit)半导体器件应用网的访谈,针对产业链上下游的半导体器件应用和医疗设备发展趋势展开对话,以洞悉行业未来方向。本文介绍本次访谈的问答摘要内容。
电子商城
品牌:SILICON LABS
品类:Wireless Gecko SoC
价格:¥8.1764
现货: 103,128
品牌:SILICON LABS
品类:Mighty Gecko Multi-Protocol Wireless SoC
价格:¥27.0929
现货: 90,767
品牌:SILICON LABS
品类:Wireless Gecko SoC
价格:¥10.4994
现货: 59,949
品牌:SILICON LABS
品类:Wireless Gecko SoC
价格:¥11.5212
现货: 59,367
现货市场
登录 | 立即注册
提交评论