Developing Optimized Sensors with Software for Electric Vehicles

2022-11-19 Amphenol Sensors News

Even the most basic electric vehicle sensors are sophisticated.


Traditionally, automotive engineers have relied on hardware to design and test electric vehicle sensors. However, with powerful software tools, it's now possible to do development work virtually to understand a sensor's performance long before it's put into a vehicle and used. 

But syncing the virtual sensor with the actual hardware in a vehicle is often challenging and requires a high level of expertise. Advanced simulation and testing methods are necessary to ensure that the sensor performs as expected on the road or in the air, collecting accurate data and communicating effectively with other systems in the vehicle.


By combining the power of software with practical hardware testing, electric vehicle manufacturers can confidently bring the latest sensor technology to their vehicles, improving safety and performance for drivers.

 

THE PRINCIPLES OF SENSOR DESIGN

At a macro level, EV sensors are about quantifying and qualifying a specific metric. That data – be it measurements for heat, gas, pressure, or current – is critical for the vehicle’s systems and vehicle management system software to maintain the optimal performance or make a correction. 

Ultimately, you can’t control or respond to what you can’t measure. 

Designing accurate and robust sensors comes down to three key principles:

  • Understanding what the sensor is measuring

  • Understanding the sensor’s environment

  • Understanding a sensor’s capabilities 

 

1. WHAT THE SENSOR IS MEASURING 

Monitoring an EV’s systems requires absolute precision. Without being exact, it’s impossible to have an EV run consistently at peak performance or provide enough warning should something go wrong. A thorough understanding of the physical phenomenon being measured and how it affects the vehicle’s performance allows for pinpoint accuracy in sensor design. 


Take thermal runaway, for instance. This battery thermal event has several signs – extreme heat, pressure, and gas venting. Understanding this event – from its early signs to when it’s in full effect – is an absolute for knowing what sensors are measuring what they should be designed to withstand.

2. THE SENSOR’S ENVIRONMENT

EV sensors don’t operate in a vacuum. Rather, they often operate in harsh conditions – be it extreme temperatures, high vibrations, or other external stressors – which can detrimentally affect their performance.


The environment an EV sensor is in can be just as important as the metric itself. Factors such as temperature, humidity, and vibration all impact a sensor’s performance. For example, a high-temperature environment can cause a sensor to malfunction or read inaccurately. 

3. THE SENSOR’S CAPABILITIES

Not all sensors are created equal. Some have greater precision than others or are better suited for specific environments. Some sensors can self-diagnose, while others have a limited level of intelligence. It’s important to understand a sensor’s capabilities and limitations to determine if it’s the right fit for a particular application.


Without the proper functionality for the metric being measured and the sensor's environment, it’s impossible for a sensor to provide accurate and reliable data.

 

SOFTWARE FOR ELECTRIC VEHICLE SENSOR DESIGN & TESTING

Designing and implementing an EV sensor goes beyond simply creating a device that measures data. The sensor must also be able to transmit that information accurately and reliably to the vehicle’s software systems, where it can be analyzed and acted upon.


EVs are complex machines. As such, their sensors are complex devices. 


Creating sensors that meet the rigors of application doesn't just happen. Even the most basic EV sensors require the highest level of careful and thoughtful design for a long and accurate useful life. 


Software for electric vehicle sensor design is critical to this. 


Without software, sensor design and testing would be a long and manual process that doesn’t allow for as much experimentation. The software allows for the quick iteration necessary to fine-tune sensor functionality, ultimately creating better-performing devices in less time.


For the purposes of sensor development, design and testing software are a series of algorithms that are simplified versions of reality. This includes simulated environments and dynamics to the digital twins of sensors that are tested.


Testing sensors under simulated environmental conditions, with the same software systems they will be integrated with, is crucial in ensuring their success in the real world.

Effective software for electric vehicle sensor design and testing looks at a variety of factors, including:

  • Dynamics of the environment

  • What’s the priority of to measure

  • The number of sensors needed for accurate measurement

  • Response times

  • Sensor tolerances 

  • Outputs based on shifting baselines (e.g. temperature measurements in high-pressure environments) 


Ultimately, these simulations are meant to push a sensor’s digital twin to its absolute limits. Information gathered from these simulations is critical for creating and refining the physical product, which will have real-world applications and implications. 


Back to our thermal runaway example. When thermal runaway starts, one of the earliest warning signs of battery cell decomposition is gas venting. However, in an EV battery, there are certain gases to pay attention to. Through simulations, it's possible to see how a sensor reacts and at what point it starts to detect early indicators. It’s also possible to examine how temperatures inside the battery pack affect the sensor and its ability to take gas readings.  


The data is also critical for programming EV computers and systems with algorithms that are robust and reactive. At a minimum, a sensor needs to be able to measure 10x faster than the event it's monitoring for. In the case of gas venting, that means detecting specific gases before they even reach a dangerous level. 


Syncing sensors and software is a delicate balance between the physical capabilities of the sensor, the environmental conditions it will exist in, and how its data will be used and acted upon by EV systems. Done correctly, this process of syncing sensors with software for real-world applications is crucial for electric vehicles, as they rely on constantly gathering and analyzing data when in use.

SENSOR MANUFACTURERS, EV SENSOR SOFTWARE, & SENSOR DESIGN  

The last thing anyone wants to be integrated into their EV design are sensors that simply aren’t up to real-world use or real-time monitoring. That’s why collaboration and partnership with sensor manufacturers, EV sensor software companies, and design firms are crucial for success in the EV market. 


Working with your OEM sensor manufacturer, it’s important to be as upfront and detail-oriented as possible. Sensor manufacturers need to understand the specific needs and dynamics of the EV industry, as well as how their products will be used within it. This ensures their sensors can handle the unique challenges of application – such as high pressure and temperature conditions —- and expected performance.


At the same time, sensor manufacturers need to be upfront about their in-house capabilities for designing, creating, and testing EV sensors. This is important for two reasons: 

  • Clients need to trust that the sensors will meet their needs. 

  • Sensor manufacturers need to accurately estimate the time and resources necessary for a project. If they cannot design and test EV sensors in-house, they will need to outsource those tasks to another company – which adds time and cost to the project. 

 

EV SENSOR DESIGN FOR OPTIMAL PERFORMANCE

Simulation-based engineering has come a long way and is now an important part of the design process for electric vehicles – sensors included. 


With software for electric vehicle sensor design and simulations, it’s possible to verify performance and identify potential problems in real-world applications. 

授权代理商:世强先进(深圳)科技股份有限公司
技术资料,数据手册,3D模型库,原理图,PCB封装文件,选型指南来源平台:世强硬创平台www.sekorm.com
现货商城,价格查询,交期查询,订货,现货采购,在线购买,样品申请渠道:世强硬创平台电子商城www.sekorm.com/supply/
概念,方案,设计,选型,BOM优化,FAE技术支持,样品,加工定制,测试,量产供应服务提供:世强硬创平台www.sekorm.com
集成电路,电子元件,电子材料,电气自动化,电机,仪器全品类供应:世强硬创平台www.sekorm.com
  • +1 赞 0
  • 收藏
  • 评论 0

本文由李凤婷转载自Amphenol Sensors News,原文标题为:DEVELOPING OPTIMIZED SENSORS WITH SOFTWARE FOR ELECTRIC VEHICLES,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

评论

   |   

提交评论

全部评论(0

暂无评论

相关推荐

Electromagnetic compatibility for Electric Vehicle Sensors

In a sense, cars are now mobile computers. In modern automotive design, there is hardly a system that‘s not monitored or optimized by technology – sensors included. There‘s no vehicle type where this is more apparent than in electric cars.

技术探讨    发布时间 : 2022-09-21

HVAC Indoor Air Quality | The Critical Role Of CO2 Sensors

No matter how HVAC systems or regulations evolve, CO2 monitoring will always be a major component of keeping indoor environments safe for occupants. Regardless of how things change, integrated HVAC system advanced sensor technology makes it easier and more efficient to keep CO2 levels in check and spaces properly ventilated.

技术探讨    发布时间 : 2024-06-15

Application of Sensors in Healthcare: Catheters

Regardless of their intended application, a catheter is much like any other medical device that takes measurements – it‘s only as good as the sensor technology behind it.

技术探讨    发布时间 : 2023-05-06

Amphenol Sensors(安费诺)/Thermometrics 温度传感器选型指南

目录- 温度传感器产品介绍及应用领域    NTC热敏电阻/PTC热敏电阻    探针和组件    其他技术和附件   

型号- T5D,HM,YA,YB,YC,P60,YD,YF,P65,YG,YH,RL40,YK,YL,YP,YR,EC95,GC32,YS,RL45,GC16,B35,UD20,RL30,3006,AB6,MELF,JA,YS4019,JB,JTC,JC,JD,RL35,JE,JF,MF65,SP85,JS2945,JI,B43,JL,JM,JP,FP10,JR,JTR,CTR100,FP14,P85,JW,M,NDK,T,NDM,CTR65,NDL,ZTP,BB07,PT1000,0706,BB05,NDP,YS4020,NDU,YSM 4021,CL,CTR85,BR16,KU,BR14,KY,BR11,TC,FP07,1403,NHQM,YSM,TH,R100,TM,MA400,PTSM,TP,1803,BB11,EVAP,P100,MA100,DK,SC30,R60,BR23,P20,R65,HVAC,P25,YM120,PT200,EVAPA1450,MS,DKM,MT,CTR60,P30,RL1004,BR32,A1447-A1450,ND,PTA,NK,EVAPA1447,1703,PTE,PTD,SP100,PTF,DC95,PTH,B05,B07,PTO,EVAP A1424,SC50,R85,BR42,C100,2006,JYA,NHQ,NHQMM,GC11,GC14,GE,RL20,M2000,B10,PT100,B14,GT,BR55,MC65,SP60,TK95,SP65,RL14,RL060628,RL10

选型指南  -  AMPHENOL SENSORS PDF 中文 下载

Keeping Cool with Data Center Temperature Sensors

Data center temperature sensors are the eyes and ears of your climate control system. These tiny devices provide real-time data on temperature and some insight into potential humidity levels throughout your facility. They come in various forms, each suited to different applications.

应用方案    发布时间 : 2024-10-31

Amphenol Sensors(安费诺)温度传感器/MEMS压力传感器/C〇2、湿度、灰尘传感器选型指南

目录- Sensors    Temperature Sensors    Pressure Sensors    CO2, Humidity & Dust Sensors   

型号- DK SERIES,NDP SERIES,NHQ SERIES,AAS-AQS-UNO-RH-CO2,RL40,T5D SERIES,FMA SERIES,GC32,EC95,AB6 SERIES,RL45,GC16,GT SERIES,DKM SERIES,CTP65,M SERIES,UD20,S SERIES,CTP60,RL30,AIT SERIES,GE-1935,TH SERIES,NDL SERIES,3006,MELF,YS4019,RL35,HM SERIES,GE-2102,GE-2103,JS2945,T6715,T6613-X,AAS-AQS-UNO,TM SERIES,R85 SERIES,SM-UART-04L,YSM SERIES,FP10,NPI-15,T6715-X,FP14,NPC-120,HS12SP,NPI-19,B35 SERIES,T6713,BB07,SUF SERIES,NK SERIES,BB05,YS4020,T6703,YSM 4021,YR SERIES,BR16,A-1737,BR14,T6700,BR11,T SERIES,FP07,1403,NHQM,P85 SERIES,ZTP SERIES,JF SERIES,NDK SERIES,JS8741,NPH SERIES,JS8746,R100,JR SERIES,PTSM,MA400,SM-PWM-01C,JB SERIES,1803,BB11,B05 SERIES,T6616,EVAP,YF SERIES,JA SERIES,P100,YD SERIES,YH SERIES,MF65 SERIES,YG SERIES,MA100,JIC SERIES,YB SERIES,B43 SERIES,T9602,NPC-100,YA SERIES,YC SERIES,SC30,CTP100,BR23,T6613,PTD SERIES,PTE SERIES,YM120,HVAC,JTC SERIES,JTR SERIES,MS SERIES,YK SERIES,WTF083B001,P30 SERIES,YL SERIES,YP SERIES,PTA SERIES,PTH SERIES,ND SERIES,B07 SERIES,PTF SERIES,PTO SERIES,P60 SERIES,JM SERIES,YS SERIES,T6600,RL1004,BR32,JS6780,JI SERIES,HS30P,JW SERIES,A1447-A1450,JS SERIES,TP SERIES,JE SERIES,JC SERIES,GE-1856,1703,B14 SERIES,T6615-X,GE SERIES,R65 SERIES,DC95,JYA SERIES,T3000,EVAP A1424,SC50,BR42,A-1266,C100,GE-1923,NPP-301,706 SERIES,2006,NKA SERIES,AS SERIES,B10 SERIES,P25 SERIES,NHQMM,GC11,RL20,CL SERIES,P20 SERIES,GC14,GE-1920,NPC-1220,JP SERIES,P65 SERIES,ES SERIES,CTP85,T6713-X SERIES,BR55,MC65,KU SERIES,TK95,NDM SERIES,R60 SERIES,NDU SERIES,NPC-1210,TC SERIES,JL SERIES,RL14,JD SERIES,RL060628,RL10

选型指南  -  AMPHENOL SENSORS  - 05/2019 PDF 英文 下载

Amphenol Sensors(安费诺)/All Sensors 压力传感器选型指南(简版)

目录- 传感器解决方案及产品优势介绍    传感器技术介绍    单芯片压力传感器    双芯电路交叉耦合补偿压力传感器    双芯电路和气路交叉耦合补偿压力传感器    传感器应用领域介绍    压力单位换算    传感器通用名词解释   

型号- DLH,ADCX,ACPC-C,AXCA,ACPC,BLV,DLV,ACPC-H,AXCA-PRIME,AXCA-MIDDLE,MAMP,MLV,SAMP,ACPC-P,BLC,ADUX,BLVR,MAMP-/P,ADCA,DLH,DLVR,DLVR,BLCR,MAMP-P,MDCX,ADO,BLV,AXCX-PRIME-INCH,DLHR,DLHR,AXCX,MLV,AXCA-MIL,BLC,DLC,ADO-MIL

选型指南  -  AMPHENOL SENSORS PDF 中文 下载

EV Heat Pumps & Enhanced Battery Life

One such component contributing to improved battery efficiency is EV heat pumps. Considered a new tool for increased battery life, EV heat pumps are providing the alternate route for improved efficiency and range.

设计经验    发布时间 : 2024-10-31

Amphenol Sensors(安费诺)建筑及工业应用传感器选型指南

目录- Chip Cap 2完全校准的温湿度传感器    Telaire Ventostat®T8700壁挂式温湿度变送器    Telaire Ventostat®T8031 CO2小型风管式C02传感器    Telaire®T8041/T8042 分管式C02传感器    Telaire T8100-R系列挂壁式C02和温度变送器(带继电器)    Telaire®7000室内空气品质监测器    Telaire VaporstatTM 9002红外露点变送器    Telaire®配件    Telaire HumiTrac™温湿度变送器    T9602湿度与温度传感器    AAS-53系列水管型温度变送器    ADT/AOT/AIT温湿度变送器使用说明书   

型号- P40250128,CC2D265,P40250129,P40250126,P40250127,P40250125,P40250122,P40250123,DC95F302W,P40250120,P40250121,T8031,CC2D255,EHR-4,T8100-D-R,P40250139,K53,T8700,CC2A23,PT1000A,AIT,PT1000B,CC2A25,P40250133,P40250131,T2075NG,P40250130,T804K0-10V,T1508,T8200-D-5P,T8042-5VI0-5V,T9602-5-A-1,NI1000,9002,T9602-3-A-1,T5100,P40250149,CC2A35,T8700-E-D,P40250147,0-5000PPM,P40250144,PT100A,T7001I,P40250145,PT100B,P40250142,P40250143,T8100,S4B-EH,CC2A33,P40250141,CC2D235,CC2D355,T7001,PT1000,T2072,T7001D,CC2D25,T9602-3-A,T8042I0-10V,CC2D23,P40250156,T8041,T8100-R,P40250151,T8042,P40250150,T9602-3-D,NTC10K,CC2025,7000,T9602-3-D-1,CC2D35,T9602,CC2D33,ADT,NTC15K,T8200,CC2D335,CHIPCAP 2,NTC10K-II,T2090,T1551,T1552,MPNT3D03750M4,NTC20K,T2007,T8700-D,T8700-E,T8100,T2080,T8100-EC,P40250109,PA0250118,T8100-E-D-GN-5P-R,PA0250115,T1505,P40254275,P40254276,P40254277,P40250189,P40250186,P40250184,P40250185,T8300,P40250182,P40250183,P40250181,AAS-53,8000,PT100,T7001SK,P40250119,NTC10K-A,AOT,P40250117,T9602-5-A,P40250113,P40250114,P40250111,P40250112,DC95F103W,T2076NG,P40250110,P40250193,T9602-5-D,T8001,P40250191,7001D,P40250192,T8002,T9602-5-D-1,MPNV12R30M 16004616,B4B-EH-A,P40250190,T8041-5VI0-5V,RS485,NTC10K-III

选型指南  -  AMPHENOL SENSORS PDF 中文 下载

Amphenol Sensors(安费诺) 汽车传感器选型指南

目录- 汽车传感器解决方案介绍    车厢空气质量系列传感器    排放处理系列传感器    新能源汽车传感器应用    测量汽车应用中最为关键的参数   

型号- SM-UART-01L,PT200,T6703,TPMS,DPS,G-CAP2,SM-UART-01D,A2103,NPI-19,T6713,A-2102,EGR,A-2103,NPP-301,GE-1935,A-2121,ZTP,DPF,SM-UART-01L+,SM-PWM-01C,NPX1

选型指南  -  AMPHENOL SENSORS PDF 中文 下载

EV Battery Pack Water Detection Sensor from Amphenol Sensors

With the sharp growth of electric vehicles, many OEMs are using a water cooling system for the EV battery system. When water escapes the system and leaks into the battery pack, dangerous conditions are created. Amphenol Advanced Sensors‘ Water Detection Sensor monitors for water leakage by constantly checking resistance values. If a leak is detected in the EV battery pack, this sensor technology provides immediate notification.

产品    发布时间 : 2024-10-30

Amphenol Sensors(安费诺) 医疗传感器选型指南

目录- NPA贴片式压力传感器系列    NTC AB6 型    "SC/MC"系列专为医疗设汁    MA100系列    ZTP-148SR系列    ZTP-101T系列    NPC-100系列一次性医疗压力传感器    NPC-1210系列    NPG-1220系列中压传感器    NPI-12卫生型压力传感器、不锈钢介质隔离压力传感器    NPI-15系列电流激励高压、介质隔离压力传感器    NPI-15VC系列电压激励、高压、介质隔离压力传感器    NPI-19系列电流激励、中压、介质隔离压力传感器    NPI-19系列电压激励、中压、介质隔离压力传感器    NPP-301系列贴片封装压力传感器   

型号- NPP-301B-700AT,NPC-1001000,NPI-12-101G,MC65F103C,NPP-301A-100AT,NPI-19X-YYYZZ,NPI-15X-YYYZZ,NPI-19J-XXX,B35,ZTP-148SR,NPI-19A-XXX,MC65F103A,NPP-301A-200A,MC65F103B,AB6,NPA-300,NPI-19H-XXX,NPA-700,AB6E8,B43,NPP-301B-200A,NPI-12,NPI-19X-XXXXV,NPI-15,SC30F103W,NPP系列,NPP-301B-200AT,SC30F103V,MA100BF103C,NPI-19,SC30F103A,SC,MA100BF103B,MA100BF103A,NPI-15B-XXX,MA100GG232C,NPI-15C-C00903,NNP301B,NNP301A,MA100GG103CN,NPP-301B-700A,BR16,BR14,BR11,NPC-1210XXXX-YZ,ZTP-101T,NPC-100T,MA100GG103BN,MA100,NPP-301A-100A,NPC-100,NPI-19A-C01864,BR23,P20,P25,AB6B4,MC65F232A,MC,AB6B2,MC系列,NPI-19A-002GV,MA100GG103AN,AB6A8-BR16KA103N,NPI-15VC,NPP-301A-200AT,P30,BR32,NPA-100,NPC-1220XXXX-YZ,NPA-500,SC50F103W,NPP-301B-100A,NPA,NPP-301B-100AT,MC65F502B,NPI-15A-XXX,B05,B07,SC30Y103W,NPI-15J-XXX,NPP,NPP-301A-700A,BR42,NPP-301,MA100GG103B,NPI-19B-XXX,NPI-12-101GH,MA100GG103A,MC65G503B,MA100GG103C,NPC-1220,NPP-301A-700AT,B10,NPI-15H-XXX,B14,NPI-15XXXXXX,NTC AB6,BR55,NPC-1210,SC系列

选型指南  -  AMPHENOL SENSORS  - 2018年7月 PDF 中文 下载

Melexis Sets a New Reference for Safe and Stray Field Robust Magnetic Sensors

Melexis expands its innovative Triaxis magnetic sensing integrated circuit (IC) range with stacked dual-die variants of the MLX90425 and MLX90426. Featuring a 5 mT stray field immunity (SFI) and 360° rotary detection of the magnet, these ICs support safety requirements for steering wheel and accelerator pedal position sensing, enabling a higher level of autonomous driving.

产品    发布时间 : 2024-09-28

展开更多

电子商城

查看更多

品牌:AMPHENOL SENSORS

品类:Air Quality Sensors

价格:¥119.7800

现货: 5,396

品牌:AMPHENOL SENSORS

品类:Surface Mount Pressure Sensors

价格:¥97.5000

现货: 51

品牌:AMPHENOL SENSORS

品类:Air Quality Sensors IR LED Dust Sensor

价格:¥40.5000

现货: 35

品牌:AMPHENOL SENSORS

品类:Board Mount Pressure Sensors

价格:¥253.8839

现货: 30

品牌:AMPHENOL SENSORS

品类:Board Mount Pressure Sensors

价格:¥253.8839

现货: 25

品牌:AMPHENOL SENSORS

品类:Board Mount Pressure Sensors

价格:¥227.5314

现货: 25

品牌:AMPHENOL SENSORS

品类:Low Pressure Compact Sensors

价格:¥125.9778

现货: 25

品牌:AMPHENOL SENSORS

品类:Board Mount Pressure Sensors

价格:¥227.5314

现货: 25

品牌:AMPHENOL SENSORS

品类:Board Mount Pressure Sensors

价格:¥227.5314

现货: 25

品牌:AMPHENOL SENSORS

品类:Board Mount Pressure Sensors

价格:¥227.5314

现货: 25

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

现货市场

查看更多

品牌:Peratech

品类:Single Point Sensors

价格:¥20.7131

现货:42

品牌:INFINEON

品类:多元件集成电路

价格:¥4.9468

现货:10

品牌:INFINEON

品类:多元件集成电路

价格:¥17.3166

现货:9

品牌:RENESAS

品类:传感器

价格:¥1.9880

现货:5

品牌:ACAM

品类:连接线

价格:¥11,208.9785

现货:2

品牌:RENESAS

品类:评估板

价格:¥561.3840

现货:2

品牌:WAGO

品类:2通道模拟输入模块

价格:¥2,908.3500

现货:1

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

服务

查看更多

压力传感器定制

可定制板装式压力传感器支持产品量程从5inch水柱到100 psi气压;数字输出压力传感器压力范围0.5~60inH2O,温度补偿范围-20~85ºС;模拟和数字低压传感器可以直接与微控制器通信,具备多种小型SIP和DIP封装可选择。

提交需求>

温度传感器定制

可定制温度范围-230℃~1150℃、精度可达±0.1°C;支持NTC传感器、PTC传感器、数字式温度传感器、热电堆温度传感器的额定量程和输出/外形尺寸/工作温度范围等参数定制。

提交需求>

查看更多

授权代理品牌:接插件及结构件

查看更多

授权代理品牌:部件、组件及配件

查看更多

授权代理品牌:电源及模块

查看更多

授权代理品牌:电子材料

查看更多

授权代理品牌:仪器仪表及测试配组件

查看更多

授权代理品牌:电工工具及材料

查看更多

授权代理品牌:机械电子元件

查看更多

授权代理品牌:加工与定制

世强和原厂的技术专家将在一个工作日内解答,帮助您快速完成研发及采购。
我要提问

954668/400-830-1766(工作日 9:00-18:00)

service@sekorm.com

研发客服
商务客服
服务热线

联系我们

954668/400-830-1766(工作日 9:00-18:00)

service@sekorm.com

投诉与建议

E-mail:claim@sekorm.com

商务合作

E-mail:contact@sekorm.com

收藏
收藏当前页面