Achieve Zero Switching Loss with SiC MOSFET
A technical report published in IEEE Transactions on Power Electronics, demonstrated that the switching loss of SiC MOSFET can be completely eliminated under some control strategies.
The study was conducted by Prof. Alex Q. Huang’s group at University of Texas at Austin and Prof. Bo Zhang’s group at University of Electronic Science and Technology of China. They analyzed the switching processes by TCAD simulation and found that the traditional method used to measure switching loss underestimates the turn-on loss and overestimates the turn-off loss due to discharge/charge current for MOSFET output capacitance (Coss) could not be directly measured.
The authors showed that zero switching loss (ZSL) is achieved when utilizing zero-voltage switching (ZVS) turn-on to recover the energy stored in output capacitance (Eoss) and using stronger gate driver and reducing parasitic capacitance to achieve zero turn-off loss (ZTL). With ZSL, the power loss caused by switching will no longer be the frequency limitation of system and this result has been verified in their experiment. In other words, the predominant factor that limits the upper boundary of switching frequency is not switching loss anymore, they are instead other frequency dependent losses such as magnetic core/winding loss, driving loss, and the minimum deadtime required to achieve ZVS.
- |
- +1 赞 0
- 收藏
- 评论 0
本文由Avatar转载自fastSiC,原文标题为:Achieve zero switching loss with SiC MOSFET,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
相关推荐
SiC can Be Extremely Fast
People would think of GaN (gallium nitride) when talking about high frequency or very high frequency switching. However, a study published by scientists from Stanford University showed that SiC can also be extremely fast.The scientists demonstrated that DC-RF efficiency higher than 86% can be realized with a 17MHz class E inverter using SiC MOSFET.
SiC MOSFET驱动电压尖峰分析与抑制(上)
高频、高速开关是碳化硅(SiC) MOSFET的重要优势之一,这能显著提升系统效率,但也会在寄生电感和电容上产生更大的振荡,从而让驱动电压产生更大的尖峰。设计可靠的驱动电路来抑制的驱动电压尖峰,成为发挥SiC MOSFET优势特性的关键课题。为此,我们首先测试复现驱动尖峰波形并分析原因,然后采取相应措施来抑制尖峰。本篇主讲第一部分:驱动电压尖峰复现与分析。
SiC MOSFET驱动电压尖峰分析与抑制(下)
高频、高速开关是碳化硅(SiC) MOSFET的重要优势之一,这能让系统效率显著提升,但也会在寄生电感和电容上产生更大的振荡,从而在驱动电压上产生更大的尖峰。抑制驱动电压尖峰,成为发挥SiC MOSFET优势的关键课题。本篇主要介绍驱动电压尖峰的抑制方法。
即思创意(fastSiC)碳化硅MOSFET和肖特基二极管选型指南
目录- SiC Schottky Diode&SiC MOSFET
型号- FL12190A,FF06100G,FC06008D,FF06100F,FC06006A,FC06008C,FC06008B,FF06100D,FC06008A,FF06320B,FF06320A,FF06030Q,FF17900E,FH06010C,FH06020E-3,FL06320B,FH06020E-2,FL06320A,FC06006D,FC06016C,FC06006C,FF17900Q,FC06010C,FH06004C,FH06006C,FC06002X,FL06150A,FL06320G,FF061K4A,FF12040Q
【产品】雪崩耐受性强的碳化硅MOSFET FF06030系列,具有更高的系统效率,允许使用高温应用
即思创意推出的碳化硅MOSFET–Falcon Series FF06030具有快速切换行为的优化RDS(on),能够与标准栅极驱动器兼容,雪崩耐受性强。其具有更高的系统效率,允许使用高温应用并进行高频操作,可靠性高,符合RoHS标准且无卤素。
FL06320碳化硅MOSFET产品规格书
描述- 本资料为FL06320型碳化硅MOSFET的产品数据手册。该产品属于650V、320mΩ SiC MOSFET - Falcon系列,具有优化的导通电阻和快速开关行为,适用于高功率密度应用。产品具备低剖面尺寸、低寄生电感包装,并支持标准12V栅极驱动器。此外,还具有高雪崩耐压能力,可应用于高温环境。
型号- FL06320,FL06320D,FL06320C
FF06030碳化硅MOSFET产品规格书
描述- 本资料为fast SiC半导体公司的SiC MOSFET产品FF06030的数据手册。该MOSFET采用650V电压等级,具有低导通电阻(30mΩ)和高功率密度设计,适用于高速开关应用。数据手册提供了详细的电气特性、热特性、封装尺寸和应用建议。
型号- FF06030,FF06030Q,FF06030E-3
What is SiC and why is SiC for power devices?
In SiC, because of its 10 times strength to withstand electric field, its theoretical specific on-resistance can be 200 times smaller than Si counterpart, which enables people to use SiC to manufacture high voltage devices with simple structures. Today, unipolar SiC power devices, including SiC MOSFETs and SiC Schottky rectifiers, have been commercialized for voltage rating up to 3300V, which is unreachable by any other semiconductor materials.
FF06100碳化硅MOSFET产品规格书
描述- 本资料为fast SiC半导体公司的SiC MOSFET产品FF06100的数据手册。该MOSFET具有650V电压等级、100mΩ导通电阻,适用于高功率密度应用。产品具备快速开关行为、低寄生电感封装、与标准栅极驱动器兼容等特点,并支持全封装带隔离(可选)。此外,产品符合RoHS标准和卤素免费要求。
型号- FF06100D,FF06100C,FF06100
650V Enhancement-mode SiC MOSFET Provides Qoss Almost 1/10 of Advanced Silicon Super-junction MOSFET
Our enhancement-mode SiC MOSFET provides Qoss almost 1/10 of advanced silicon super-junction MOSFET and close to GaN FET. The Rdson@100C is only 10% higher than Rdson@25C, enables better Rdson@100C*Qoss figure-of-merit (FOM) better than GaN. The driving method of our SiC MOSFET is similar to that of silicon power MOSFET and the dV/dt is easily and fully controllable by adjusting external gate resistance (Rg,ext). The much higher avalanche energy (EAS) density (close to 20J/cm2) enables the EAS rating similar to advanced silicon super-junction MOSFET despite with a much smaller chip size.
碳化硅MOS进入消费电源市场,即思创意发布65W SiC快充方案
即思创意(Fast SiC Semiconductor Inc., FSS) 发布了一系列典型耐压 750V的 SiC MOSFET,将有望首次把以往只用于新能源车、航天和高阶工控等的碳化硅技术导入消费者随身携带的充电头中。
FH06020E-2碳化硅合并PN-肖特基二极管
描述- 本资料为fast SiC半导体公司生产的SiC MOSFET产品FH06020E-2的数据手册。该产品是一款650V SiC MPS高压整流器,属于Husky系列。数据手册详细介绍了产品的特性、优点、潜在应用领域、关键性能参数和电气特性。
型号- FH06020E-2
即思创意650V增强型SiC MOSFET,可实现比GaN更好的品质因数(FOM)
即思创意推出的增强型碳化硅场效应管(SiC MOSFET),其输出电荷(Qoss)几乎是新一代超结硅MOSFET的1/10,接近氮化镓场效应管(GaN FET)水平。
SiC is quickly taking the market share originally occupied by Si IGBT in electric vehicles
With SiC inverters, it is possible to extend the range of EVs by 6~10% with the same size of battery pack, or maintain the same range with a smaller battery because of its high efficiency and high frequency operation capability. It can be sure that SiC will continue to replace Si in EVs, not just in main inverters, but also on-board chargers (OBC) and DC/DC converters, probably faster than anticipated.
电子商城
现货市场
服务
可根据用户的MOSFET管进行参数检测出具报告,静态参数最大电压:7500V、检测最大电流6000A;动态参数最大电压:3300V、检测最大电流:4500A。该测试标准满足GB、IEC及行业标准等,具备可靠性评估及老化实验能力。
实验室地址: 西安 提交需求>
登录 | 立即注册
提交评论