Gallium Nitride (GaN)‘s Potential in MedTech
The medical technology industry includes medical devices which simplify the prevention, diagnosis, and treatment of diseases and chronic illnesses. According to Fortune Business Insights. The global medical devices market is projected to grow from $495.46 billion in 2022 to $718.92 billion by 2029 at a CAGR of 5.5%.
The demand for high-efficiency MedTech devices is increasing for several reasons:
The growing prevalence of chronic diseases such as diabetes, cardiovascular disease, and cancer requires continuous monitoring and care.
The increasing emphasis on early diagnosis and treatment increases the patient population requiring diagnostic procedures and testing.
The aging population is increasing demand for ophthalmic and orthopedic procedures and related equipment as these procedures are more common in the geriatric population.
The growing emphasis on fitness among adults and from healthcare agencies toward monitoring and diagnosis has increased demand for wearable devices, such as fitness trackers.
The shift toward homecare settings is boosting demand for portable devices and wearable devices for the treatment of chronic illnesses.
High-efficiency MedTech devices can provide better and faster diagnosis, treatment, and patient monitoring, leading to improved outcomes and higher patient satisfaction. High-efficiency devices can help reduce overall healthcare expenses by minimizing hospital stays, reducing complications, and improving efficiency. More efficient, lower-cost devices can increase accessibility to a larger patient population. For these reasons, GaN is becoming the solution that healthcare companies are turning toward as healthcare needs grow and technology continues to advance.
Gallium Nitride Technology (GaN Technology) Explained
Gallium nitride (GaN) semiconductors exceed the performance capability of silicon in speed, power handling, efficiency, size, and cost. GaN FETs and ICs are a high-volume manufacturable alternative to traditional silicon-based devices that can provide higher efficiency, smaller size, and lower cost for a variety of MedTech applications, including DC-DC Conversion, Motor Drives, and wireless power, among others.
Advantages of GaN in MedTech
Gallium nitride (GaN) is a material that is being increasingly used in MedTech applications because it offers several advantages over traditional silicon-based devices.
Portability
GaN allows for higher power density in smaller form factors. This means that GaN-based power adapters can deliver the same or higher power output as traditional silicon-based solutions in a much smaller size, making MedTech systems more portable and lightweight.
High Efficiency
GaN devices have lower power losses than silicon-based devices, meaning they can operate at higher efficiency levels. This makes them particularly useful in medical devices that need to operate for extended periods of time on battery power.
Faster Switching Speed
GaN devices can switch on and off more quickly than silicon-based devices, so they can operate at higher frequencies. This makes them useful in applications such as wireless charging and Wireless Power transfer for wearable devices and reducing 'cable clutter' in hospital environments.
Improved Thermal Performance
GaN devices have better thermal conductivity than silicon-based devices, which means they can dissipate heat more effectively. This makes them useful in high-temperature applications like surgical tools and medical lasers, making them safer and enabling an improved user experience.
Higher Resolution Scanning Devices
The high switching frequency of GaN allows for more precise control over the signals generated and detected by medical imaging systems and allows for higher data transmission rates and faster image acquisition times, resulting in higher-resolution images. The higher power handling capability of GaN is important for imaging systems that require high power output to penetrate dense tissue and high-quality images. These benefits lead to more accurate diagnoses and better patient outcomes.
Applications for GaN in MedTech
The unique properties of GaN make it an attractive alternative to traditional silicon-based devices for many MedTech applications, enabling devices that are more efficient, powerful, and compact, resulting in improvements in patient care, while reducing medical costs.
DC-DC Conversion: GaN-based DC power supplies for medical systems provide increased efficiency, smaller form factors, and reduced EMI to avoid interference.
Motor Drives: GaN-based BLDC motors are used in surgical robotics because they can operate at high frequencies, which allows for more precise cutting and ablation, reducing risk and speeding recovery. GaN also allows for many smaller and lightweight motors.
Wireless Power: GaN-based wireless power systems increase safety and reduce the cost of medical care by reducing cable clutter in the medical environment. In addition, as wearable health and fitness trackers continue to become ubiquitous, GaN FETs and ICs are enabling efficient, fast wireless charging in a small, low-profile footprint.
Choosing the Right GaN Product for your MedTech Application
When choosing a GaN product for your MedTech application, consider the performance requirements, size and weight restrictions, reliability of product and supplier, and cost. The latest generation of GaN devices will offer the best combination of these factors.
The Future of Gallium Nitride and MedTech
GaN devices are already being used in a variety of MedTech applications, including medical imaging, surgical tools, and wearable devices. As the technology continues to improve and costs continue to decrease, we can expect to see even wider adoption of GaN in the MedTech industry.
- |
- +1 赞 0
- 收藏
- 评论 0
本文由Vicky转载自EPC News,原文标题为:Gallium Nitride (GaN)'s Potential in MedTech,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
相关推荐
EPC(宜普)eGaN® 氮化镓晶体管(GaN FET)和集成电路及开发板/演示板/评估套件选型指南
目录- eGaN FETs and ICs eGaN® Integrated Circuits Half-Bridge Development Boards DrGaN DC-DC Conversion Lidar/Motor Drive AC/DC Conversion
型号- EPC2212,EPC2214,EPC2059,EPC2216,EPC2215,EPC2218,EPC2016C,EPC2050,EPC2052,EPC2051,EPC2054,EPC2053,EPC2055,EPC9086,EPC2218A,EPC90153,EPC9087,EPC90154,EPC2069,EPC2102,EPC2101,EPC2104,EPC2103,EPC2106,EPC2105,EPC2107,EPC9018,EPC2065,EPC90151,EPC90152,EPC21702,EPC2100,EPC2067,EPC2221,EPC21701,EPC2066,EPC90150,EPC9097,EPC90145,EPC90142,EPC9098,EPC90143,EPC9099,EPC9092,EPC90148,EPC90149,EPC90146,EPC9094,EPC90147,EPC2219,EPC9091,EPC2619,EPC2036,EPC2035,EPC2038,EPC2037,EPC2014C,EPC2039,EPC9507,EPC2030,EPC9067,EPC2032,EPC2031,EPC9068,EPC2152,EPC2033,EPC9063,EPC9186,EPC9066,EPC8010,EPC9180,EPC2204A,EPC9181,EPC9061,EPC2308,EPC2307,EPC9005C,UP1966E,EPC2203,EPC9004C,EPC2202,EPC2204,EPC2015C,EPC2207,EPC2206,EPC2040,EPC2045,EPC2044,EPC9194,EPC2012C,EPC2019,EPC9049,EPC9203,EPC9204,EPC9205,EPC2252,EPC9166,EPC9167,EPC9047,EPC9201,EPC9041,EPC9162,EPC9163,EPC9165,EPC7020,EPC9160,EPC9040,EPC2024,EPC8009,EPC2302,EPC2001C,EPC2029,EPC2304,EPC2306,EPC2305,EPC8002,EPC2021,EPC9177,EPC2020,EPC9057,EPC9167HC,EPC2023,EPC9179,EPC9058,EPC8004,EPC2022,EPC9059,EPC9173,EPC9174,EPC9055,EPC9176,EPC9170,EPC9050,EPC9171,EPC9172,EPC2010C,EPC2034C,EPC7007,EPC7002,EPC9148,EPC2071,EPC7001,EPC23101,EPC23102,EPC23103,EPC9144,EPC90140,EPC23104,EPC2111,EPC7004,EPC2110,EPC7003,EPC90133,EPC90132,EPC9022,EPC9143,EPC90137,EPC90138,EPC90135,EPC90139,EPC7019,EPC7018,EPC9038,EPC9159,EPC9039,EPC2007C,EPC21603,EPC9156,EPC9036,EPC9157,EPC9037,EPC2088,EPC7014,EPC21601,EPC9158,EPC90122,EPC9151,EPC9031,EPC90123,EPC90120,EPC9153,EPC9033,EPC90121,EPC9154,EPC90124,EPC9150,EPC90128
GaN Transistor for Several Power Applications
GaN transistors are significantly faster and smaller than silicon MOSFETs. The performance of GaN shows that efficiency and performance have improved significantly, leading to several new applications that were not possible with silicon technology. eGaN® FETs, from EPC, are supplied in a low inductance, low resistance, small and low-cost LGA or BGA packages. In addition, they offer designers the best in class compared to MOSFETs in both hard switching and soft-switching applications.
Advancements in USB Power Delivery: GaN Technology for Efficiency and High-Power Density
型号- EPC9195,EPC2619,LTC7891
EPC(宜普)eGaN®FET与IC/开发板/演示板/评估套件选型指南
目录- eGaN FETs and Ics eGaN® Integrated Circuits Half-Bridge Development Boards DrGaN DC-DC Conversion Lidar/Motor Drive AC/DC Conversion
型号- EPC2212,EPC2214,EPC2059,EPC2216,EPC2215,EPC2218,EPC2016C,EPC2050,EPC9126,EPC2052,EPC2051,EPC2054,EPC2053,EPC2055,EPC9086,EPC2218A,EPC90153,EPC9087,EPC90154,EPC2069,EPC2102,EPC2101,EPC2104,EPC2103,EPC2106,EPC2105,EPC2107,EPC9018,EPC2065,EPC90151,EPC90152,EPC21702,EPC2100,EPC2067,EPC2221,EPC21701,EPC2066,EPC90150,EPC9097,EPC90145,EPC90142,EPC9098,EPC90143,EPC9099,EPC9092,EPC90148,EPC90149,EPC90146,EPC9094,EPC90147,EPC2219,EPC9091,EPC2619,EPC2036,EPC2035,EPC2038,EPC2037,EPC2014C,EPC2039,EPC9507,EPC2030,EPC9067,EPC2032,EPC2031,EPC9068,EPC2152,EPC2033,EPC9063,EPC9126HC,EPC9186,EPC9066,EPC8010,EPC2204A,EPC9061,EPC2308,EPC2307,EPC9005C,UP1966E,EPC2203,EPC9004C,EPC2202,EPC2204,EPC2015C,EPC2207,EPC2206,EPC2040,EPC2045,EPC2044,EPC9194,EPC2012C,EPC2019,EPC9049,EPC9203,EPC9204,EPC9205,EPC2252,EPC9166,EPC9167,EPC9047,EPC9201,EPC9041,EPC9162,EPC9163,EPC9165,EPC7020,EPC9160,EPC9040,EPC2024,EPC8009,EPC2302,EPC2001C,EPC2029,EPC2304,EPC2306,EPC2305,EPC8002,EPC2021,EPC9177,EPC2020,EPC9057,EPC9167HC,EPC2023,EPC9179,EPC9058,EPC8004,EPC2022,EPC9059,EPC9173,EPC9174,EPC9055,EPC9176,EPC9170,EPC9050,EPC9171,EPC9172,EPC2010C,EPC2034C,EPC7007,EPC7002,EPC9148,EPC2071,EPC7001,EPC23101,EPC23102,EPC23103,EPC9144,EPC90140,EPC23104,EPC2111,EPC7004,EPC2110,EPC7003,EPC90133,EPC90132,EPC9022,EPC9143,EPC90137,EPC90138,EPC90135,EPC90139,EPC7019,EPC7018,EPC9038,EPC9159,EPC9039,EPC2007C,EPC9156,EPC21603,EPC9036,EPC9157,EPC9037,EPC2088,EPC7014,EPC21601,EPC9158,EPC90122,EPC9151,EPC9031,EPC90123,EPC90120,EPC9153,EPC9033,EPC90121,EPC9154,EPC90124,EPC9150,EPC90128
Intellectual Power Amplifier Module Based on GaN FETs
To simplify and accelerate the development process of many devices (D-class audio amplifiers, AC current and voltage calibrators, power supply modulators etc.), the idea of creating an Intellectual Power Amplifier Module (IPAM) appeared. IPAM is a fully differential pulsing power amplifier covered by a common negative feedback. The module contains small FPGA chip. The development of the output choke has turned into a separate R&D work related to the need to study the parameters of the newest high-frequency power ferrites manufactured by TDK/Epcos and Ferroxcube.
How to Design a 2kW 48V/12V Bi-Directional Power Module with GaN FETs for 48V Mild Hybrid Electric Vehicles
This artical tells how to Design a 2kW 48V/12V Bi-Directional Power Module with GaN FETs for 48V Mild Hybrid Electric Vehicles. A new reference design demo board, EPC EPC9165, is available to help jump start the design of a 2 kW bi-directional converter.
GaN Power Devices Achieve a High-Efficiency 48V, 1.2kW LLC Resonant Converter in a ⅛th Brick Size
EPC designed a 1.2kW resonant converter demo board (EPC9174) in an 1/8th brick form factor that achieves an impressive 97.3% peak efficiency.
ROHM’s New 13.56MHz Wireless Power Supply Chipset:Providing Wireless Charging and Communication Functions with a Single Chipset
ROHM Group company LAPIS Technology developed a chipset capable of providing up to 1W of wireless power for compact and streamlined wearable devices, and for industrial smart, miniaturized and sealed solution.
EPC to Showcase Advanced GaN Power Solutions at PCIM Asia 2024
EPC’s GaN Experts will be available during PCIM Asia, showcasing the latest generation of GaN FETs and ICs in a wide variety of real-world applications including AI servers, robotics, and more.
eGaN FETs Are Low EMI Solutions!
GaN FETs can switch significantly faster than Si MOSFETs causing many system designers to ask − how does higher switching speeds impact EMI? In this blog, EPC discusses simple mitigation techniques for consideration when designing switching converter systems using eGaN® FETs and will show why GaN FETs generate less EMI than MOSFETs, despite their fast-switching speeds.
EPC2152 GaN Integrated Power Stage – Redefining Power Conversion
This complete power stage, the EPC2152 ePower™ Stage, can be driven at multi-megahertz frequencies and controlled by a simple ground-referenced CMOS IC, and with just a few added passive components, could become a complete DC-DC regulator. Integrated devices in a single chip are easier to design, easier to layout, easier to assemble, save space on the PCB, and increase efficiency.
Design Higher Power Density USB-C PD Applications with New 50V GaN FET in Tiny 1.8mm² Footprint from EPC
EPC, the world’s leader in enhancement-mode gallium nitride (GaN) power FETs and ICs, launches the 50 V, 8.5 mΩ EPC2057aN FET is specifically designed to meet the evolving needs of high-power USB-C devices including those used in consumer electronics, in-car charging, and eMobility.
电子商城
服务
可定制电感最大电流100A,尺寸最小7 x 7 x 3.0mm到最大35 x 34 x 15.5 mm,工作频率100KHZ ~ 2MHZ,感值范围:0.15 ~ 100uh;支持大功率电感,扁平线电感,大电流电感,高频电感,汽车电感器,车规电感,一体成型电感等定制。
最小起订量: 5000 提交需求>
满足150W内适配器、PD快充、氮化镓快充等主流产品测试需要;并可查看被测开关电源支持协议,诱导多种充电协议输出,结合电子负载和示波器进行高精度测试。测试浪涌电流最大40A。支持到场/视频直播测试,资深专家全程指导。
实验室地址: 深圳 提交需求>
登录 | 立即注册
提交评论