【应用】SiC MOS SCT3040KR+SiC二极管LSIC2SD120C10助力氢燃料电池DC-DC高效小型化设计
与传统汽车一样,燃料电池汽车也必须具有很强的机动性,以便对不同的路况及时做出相应的反应。为满足机动性的要求,需要燃料电池后端有强劲输出能力。若以燃料电池作为电源直接驱动,会表现为输出特性偏软、输出电压较低,在燃料电池与汽车驱动之间加入DC/DC,两者共同组成电源对外供电,从而转换成稳定、可控的直流电源,所以一个高性能的DC/DC对燃料电池汽车显得尤为重要。
图1 氢燃料电池DC-DC在燃料电池汽车系统中的地位
目前对于燃料电池DC/DC研发存在的几大难点:
一是主电路拓扑的选择,针对不同的电堆就会有不同的选择,这方面存在一定的技术难度;二是控制,针对不同的拓扑,对应的控制也不一样;三是结构设计和热设计方面,在满足客户水阻和压损的条件下,需要最大限度地提高DC/DC散热功率,这要求在有限的体积下,提高功率密度。
按照输入电压条件,非隔离DC-DC采用BOOST拓扑,针对上述设计难点,推荐使用ROHM的SiC MOSFET SCT3040KR+力特的SiC二极管 LSIC2SD120C10 BOOST方案。
上述方案主要的优势在于以下几点:
(1)碳化硅产品带来的高频化,必然会提升DC-DC 产品的转换效率,从而提高功率密度。
ROHM SCT3040KR这款1200V/40mΩ的SiC MOS具有超低的Rdson,支持高频设计。目前行业内SiC MOS应用开关频率可以提高至80-100kHz,大幅度提高开关频率可以有效减小BOOST电感体积提高功率密度。SiC二极管采用LITTELFUSE的LSIC2SD120C10,多颗并联使用可以减少温升压力,同时贴片封装使得产品设计更加小型化,进一步提高功率密度;
(2)碳化硅高频化带来更高的dv/dt以及EMI问题,ROHM SCT3040KR采用四引脚TO-247-4L封装,利用Kelvin连接的信号源端子进行栅极驱动,可以降低封装内电源线电感的影响,减少寄生参数对于驱动EMI以及dv/dt影响,从而进一步提高MOSFET芯片的高速开关性能。尤其是可以显著改善导通损耗。与以往产品相比,导通损耗和关断损耗合起来预计可降低约35%的损耗。
(3)Littelfuse LSIC2SD120C10采用MBS结构,PN结区既可以提高反向阻断,也能注入少数载流子到漂移区以减少串联电阻从而降低器件的正向压降。同时MPS结构可以增强二极管抗浪涌能力,在BOOST应用中,二极管的抗浪涌能力可以应对系统的输入较强电流冲击,大幅提高系统稳定性。
- |
- +1 赞 0
- 收藏
- 评论 0
本文由charles_song提供,版权归世强硬创平台所有,非经授权,任何媒体、网站或个人不得转载,授权转载时须注明“来源:世强硬创平台”。
相关推荐
【选型】力特1700V SiC MOSFET助力光伏逆变器1500V系统辅助电源高效稳定运行
现在光伏逆变器电压等级提升到1500V,如果选用单端反激拓扑,单管MOS耐压值需要超过3000V,因此建议采用双管反激方案,推荐Littelfuse的SiC MOSFET LSIC1MO170E1000,1700V高耐压,同时采用常用的TO247封装,可直接替换Si MOS使用。
器件选型 发布时间 : 2020-12-29
C2M1000170D SIC MOSFET缺货,Littelfuse的LSIC1MO170E1000可低成本替代
基于市场需求的变化和SIC MOSFET产品的交期加长等因数变化,当使用C2M1000170D出现缺货状态时,推荐Littelfuse的LSIC1M0170E1000作为备选方案。LSIC1M0170E1000对比C2M1000170D价格低5%-10%,可在达成同等性能的同时降低采购成本。
器件选型 发布时间 : 2018-12-22
【选型】力特SiC MOSFET可替代安森美NTHL160N120SC1,总开关损耗仅136μJ
在光伏MPPT应用市场,采用SiC MOSFET管作为开关元件,本文主要介绍Littelfuse1200V/160mΩ SiC MOSFET LSIC1MO120E0160替换安森美NTHL160N120SC1,可PIN-PIN,总开关损耗更低,通流更大。
器件选型 发布时间 : 2021-01-13
ROHM(罗姆) SiC(碳化硅)MOSFET选型指南(中文)
描述- SiC MOSFET原理上在开关过程中不会产生拖尾尾电流,可高速运行且开关损耗低。低导通电阻和小型芯片尺寸造就较低的电容和栅极电荷。此外,SiC还具有如导通电阻增加量很小的优异的材料属性,并且有比导通电阻可能随着温度的升高而上升2倍以上的硅(Si)器件更优异的封装微型化和节能的优点。
型号- SCT3160KL,SCT4062KR,SCT3030KLHR,SCT4013DE,SCT3080AW7,SCT2450KE,SCT3160KW7,SCT2H12NZ,SCT4062KW7HR,SCT2450KEHR,SCT4013DR,SCT3060ALHR,SCT3040KRHR,SCT3060ARHR,SCT3040KLHR,SCT4036KEHR,SCT4045DRHR,SCT3022KLHR,SCT2160KE,SCT3080KW7,SCT3017ALHR,SCT3022AL,SCT3080ALHR,SCT3060AR,SCT3105KLHR,SCT4036KR,SCT3060AL,SCT4026DEHR,SCT4062KRHR,SCT3040KR,SCT2080KE,SCT3080KR,SCT3105KRHR,SCT3120AL,SCT4013DW7,SCT3030KL,SCT4062KWAHR,SCT4062KE,SCT3080ARHR,SCT4036KW7,SCT2280KEHR,SCT3120ALHR,SCT2280KE,SCT4062KWA,SCT3030AR,SCT3030AL,SCT3030AW7,SCT4036KRHR,SCT4045DEHR,SCT3120AW7,SCT3040KL,SCT3105KW7,SCT2080KEHR,SCT4018KW7,SCT4045DWA,SCT3080KL,SCT3030ALHR,SCT4062KW7,SCT3040KW7,SCT3022ALHR,SCT3030ARHR,SCT4045DW7,SCT3017AL,SCT4036KE,SCT4018KE,SCT4045DE,SCT4026DW7,SCT4062KEHR,SCT3080AR,SCT4026DW7HR,SCT4026DE,SCT4026DWA,SCT3160KLHR,SCT3080AL,SCT4045DW7HR,SCT4045DR,SCT2160KEHR,SCT3022KL,SCT4018KR,SCT4026DR,SCT4045DWAHR,SCT3105KL,SCT3160KW7HR,SCT3105KR,SCT3080KLHR,SCT3060AW7,SCT4026DRHR,SCT3080KRHR,SCT4026DWAHR
ROHM提供支持电力电子仿真工具PSIM™的第4代SiC MOSFET仿真模型
全球知名半导体制造商ROHM(总部位于日本京都市)开始提供支持电力电子仿真工具PSIM™的第4代SiC MOSFET仿真模型。该模型可在Altair® US公司开发的电力电子和电机控制用的电路仿真工具PSIM™中使用。设计人员可从ROHM官网下载模型文件,轻松进行系统级评估。这一进展使得在更广泛的产业领域中进行高效设计和评估成为可能,并能进一步推动功率元器件的使用。
产品 发布时间 : 2024-09-15
ROHM(罗姆)SiC(碳化硅)MOSFET选型指南(英文)
目录- SiC MOSFETs
型号- SCT3160KL,SCT4062KR,SCT3030KLHR,SCT4013DE,SCT3080AW7,SCT2450KE,SCT3160KW7,SCT2H12NZ,SCT4062KW7HR,SCT2450KEHR,SCT4013DR,SCT3060ALHR,SCT3040KLHR,SCT4036KEHR,SCT4045DRHR,SCT3022KLHR,SCT2160KE,SCT3080KW7,SCT3017ALHR,SCT3022AL,SCT3080ALHR,SCT3060AR,SCT3105KLHR,SCT4036KR,SCT3060AL,SCT4026DEHR,SCT4062KRHR,SCT3040KR,SCT2080KE,SCT3080KR,SCT3120AL,SCT4013DW7,SCT3030KL,SCT4062KE,SCT4036KW7,SCT2280KEHR,SCT2280KE,SCT3030AR,SCT3030AL,SCT3030AW7,SCT4036KRHR,SCT4045DEHR,SCT3120AW7,SCT3040KL,SCT3105KW7,SCT2080KEHR,SCT4018KW7,SCT3080KL,SCT3030ALHR,SCT4062KW7,SCT3040KW7,SCT3022ALHR,SCT4045DW7,SCT3017AL,SCT4036KE,SCT4018KE,SCT4045DE,SCT4026DW7,SCT4062KEHR,SCT3080AR,SCT4026DW7HR,SCT4026DE,SCT4036KW7HR,SCT3080AL,SCT4045DW7HR,SCT4045DR,SCT2160KEHR,SCT3022KL,SCT4018KR,SCT4026DR,SCT3105KL,SCT3105KR,SCT3080KLHR,SCT3060AW7,SCT4026DRHR
【经验】以SIC MOSFET SCT3040KR为例说明SiC MOS应用中Vds关断尖峰的应对策略
在SiC MOS应用中,通常在mos关断过程中存在较大的Vds尖峰,主要原因在Turn ON 时流过的电流的能量储存在线路和基板布线的寄生电感中,并与开关元件的寄生电容共振所产生的。本文将以ROHM SiC MOSFET SCT3040KR为例说明SiC MOS应用中Vds关断尖峰的应对策略。
设计经验 发布时间 : 2019-11-28
罗姆第4代SiC MOSFET裸芯片批量应用于吉利集团电动汽车品牌“极氪”3种主力车型
日前,搭载了罗姆第4代SiC MOSFET裸芯片的功率模块成功应用于“极氪”电动汽车3种车型的主机逆变器上,有助于延长车辆续航距离以及提高性能。
应用方案 发布时间 : 2024-08-30
【应用】Littelfuse SiC MOSFET LSIC1MO120E0160助力有源电力滤波器大幅提升开关频率
传统的有源滤波器通常只能滤除25次及以下次谐波,通常采用IGBT作为主功率器件,开关频率低,滤波效果差。Littelfuse的SiC MOSFET LSIC1MO120E0160可将开关频率由20kHz提高至100kHz,实现滤波高达50次谐波的有源滤波器设计。
应用方案 发布时间 : 2021-01-12
SCT2H12NZ 1700V高耐压SiC MOSFET
型号- SCT2280KE,SCT212AF,SCT2450KE,SCT2160KEAHR,SCT2450KEAHR,SCT2H12NZ,SCT3022KL,SCT2080KE,SCT3040KL,SCT3030KL,BD7682FJ-LB-EVK-402,SCH2080KE,SCT2H12NYSCT2750NY,SCT2080KEAHR,SCT2280KEAHR,SCT2160KE
SiC MOSFET损耗计算方法:通过波形的线性近似分割来计算损耗的方法
本文ROHM将介绍根据在上一篇文章(《SiC MOSFET损耗计算方法:开关波形的测量方法》)中测得的开关波形,使用线性近似法来计算功率损耗的方法。
技术探讨 发布时间 : 2024-05-25
【经验】如何通过增加栅极电容的方式减缓SiC MOSFET 的米勒效应
SiC MOSFET 同Si 基MOSFET和IGBT一样,由于存在米勒电容,都会有米勒效应的存在。由于SiC材料所带来的优势,SiC MOSFET可以工作在更高开关频率下,这样就会面临更严峻的误触发现象。所以在驱动电路设计中需要增加相关设计,使之能够较为有效地避免误触发。本文将主要介绍增加栅极电容的方式。
设计经验 发布时间 : 2020-02-14
ROHM 4th Gen SiC MOSFET Simulation Models for PSIM™ Now Available
ROHM has begun offering 4th Gen SiC MOSFET simulation models compatible with PSIM™, a circuit simulator designed for power electronics and motor drive developed by Altair®. Designers can now easily download model files to perform system-level evaluations, allowing for efficient design and evaluation across a wire range of industrial sectors, further promoting the use of power devices.
产品 发布时间 : 2024-08-02
电子商城
现货市场
服务
可定制LAMP LED、 CHIP LED、 PLCC LED、 汽车用车规级LED、COB LED的尺寸/电压/电流等参数,电压1.5-37V,电流5-150mA,波长470-940nm。
最小起订量: 30000 提交需求>
可定制单色光灯珠、双色灯珠、全彩灯珠、发光二极管、贴片灯珠、贴片LED等产品,尺寸:0.6*0.3mm-3.2*2.7mm,波长:405-940nm,亮度:24-750mcd,电压:1.5-3.5V。
最小起订量: 3000 提交需求>
登录 | 立即注册
提交评论