【技术】SiC MOSFET栅-源电压测量:在桥式结构中的注意事项-探头的CMRR篇
关键要点
・在对桥式结构中的HS MOSFET进行测试时,所用探头的共模抑制比(CMRR)在高频区域可能会降低,波形波动可能会增加。
・尤其是在测量VGS时,涉及到测量数伏级的浪涌,因此需要区分观测到的波形是原始波形还是CMRR不足引起的波动波形。
・光隔离差分探头的CMRR频率特性非常好,可观测到原始波形。
SiC MOSFET栅-源电压测量:在桥式结构中的注意事项-探头的CMRR
在对桥式结构中的高边(HS)MOSFET进行测试时,通常使用高压差分探头或差分探头(*4)来观测波形,但所用探头的共模抑制比(CMRR)在高频区域可能会降低,波形波动可能会增加。尤其是在测量栅-源电压VGS时,涉及到测量几伏级的浪涌,因此需要区分观测到的波形是原始波形还是CMRR不足引起的波动波形。
图13为在桥式结构中HS开关时和LS开关时的波形比较。所用的差分电压探头是日本横河(YOKOGAWA)公司生产的701297(150MHz,1400V)。通过对比波形可以看出,LS开关时的换流侧(HS)VGS波动较大。这是由于当换流侧以20~50V/ns的高速dV/dt变化时,探头的CMRR降低而引起的。
图13. HS开关时和LS开关时的VGS波形比较
图14是旨在确认这个原理而对差分电压探头的CMRR性能进行测试的结果。该测试是将电压探头头部的正极和负极分别连接到HS和LS的Driver Source引脚进行测试的。这种测试方法在泰克(Tektronix)的应用指南“ABCs of Probes”(*5)中有详细介绍,请参考。
图14. 隔离型电压探头的CMRR性能
在图14中,导通时和关断时的波形中,在Driver Source引脚的电位处,HS和LS均在开关时出现电压波动。然而,在开关动作结束后,LS恢复到了开关前的状态,而HS则残留了一定电位。这就是造成CMRR误差的原因。这种残余电位会随着时间的流逝(数微秒)而消失。在本次测试中,Driver Source引脚的电位在VDS上升时向负侧变化,在VDS下降时向正侧变化,不过受差分探头特性的影响,有时也会向相反的方向变化。最近,测量设备制造商推出了一种光隔离差分探头,它不受CMRR的影响,作为可以准确测量波形的有效解决方案而备受关注。
下面介绍一下光隔离差分探头与普通高压差分探头之间的性能差异。光隔离差分探头是采用泰克(Tektronix)IsoVu®技术的、由泰克生产的产品(TIVH08、MMCX50X)。
用于测试的电路板(P02SCT3040KR-EVK-001)上,有用来安装MMXC连接器的图案,该连接器可以连接光隔离探头。如图15所示,在测试时,同时连接了光隔离探头和普通的高压差分探头。正如此前介绍过的,为了尽可能地消除测量位置和差分电压探头的安装位置对波形造成的影响,电压探头的测量位置是在SiC MOSFET正下方焊接了一根短的延长线,并连接了一个100Ω的阻尼电阻。图16为两种探头的栅-源电压VGS波形。
图15. 光隔离差分探头(下)与普通的高压差分探头(上)
图16. 使用光隔离差分探头和普通的高压差分探头观测到的HS开关时的VGS波形和CMRR性能比较
由于HS正在执行开关动作,因此HS的栅-源电压VGS由于普通高压差分探头的CMRR降低而导致在导通后超过18V驱动电压,并在关断后降至0V以下(绿线)。而光隔离探头在18V和0V处没有显示出可能受CMRR影响的波动,由此可以认为采用光隔离探头能够观测到准确的开关工作波形。
从图17所示的CMRR频率特性比较中也可以看出这些结果(*4,*6) 。从图中可以看出,与高压差分探头相比,光隔离探头的CMRR频率特性要好得多,就连数十MHz的共模噪声都可以消除干净。
图17. 光隔离差分探头与普通高压差分探头之间的CMRR特性比较
IsoVu®是泰克(Tektronix)公司的注册商标。
*4. 参考资料:“逆变电路的评估方法”应用指南(V1.3)岩崎通信机株式会社,2018年12月
*5. 参考资料:“ABCs of Probes” Application Note (No. EA 60W-6053-14)Tektronix, 2016年1月
*6. 参考资料:“Complete ISOLATION Extreme COMMON MODE REJECTION” White Paper(0/16 51W-60485-1)Tektronix, 2016
- |
- +1 赞 0
- 收藏
- 评论 0
本文由福尔摩斯evelyn转载自罗姆R课堂,原文标题为:在桥式结构中的注意事项 -探头的CMRR,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
相关研发服务和供应服务
相关推荐
SiC MOSFET损耗计算方法:通过波形的线性近似分割来计算损耗的方法
本文ROHM将介绍根据在上一篇文章(《SiC MOSFET损耗计算方法:开关波形的测量方法》)中测得的开关波形,使用线性近似法来计算功率损耗的方法。
SiC MOSFET损耗计算方法:开关波形的测量方法
关于根据开关波形计算功率损耗的方法,本文中ROHM将为大家介绍SiC MOSFET开关波形的测量方法。近年来,一些示波器已经具备可以自动计算并显示所观测波形的功率损耗的功能,但如果没有该功能,就需要通过测得的波形来计算损耗了。为此,需要了解具体的测量方法和波形。
在EV应用中使用第4代SiC MOSFET的效果
EV(电动汽车)有多种类型。在BEV(纯电动汽车)、HEV(混合动力汽车)、PHEV(插电式混合动力汽车)和Series HEV(串联式混合动力汽车)等不同的产品类型中,电源架构会因具体用途而有所不同。其中,最近备受关注的是BEV的双向/快速充电应用中的电池电压为400V或800V的电源架构。
ROHM(罗姆) SiC(碳化硅)MOSFET选型指南(中文)
描述- SiC MOSFET原理上在开关过程中不会产生拖尾尾电流,可高速运行且开关损耗低。低导通电阻和小型芯片尺寸造就较低的电容和栅极电荷。此外,SiC还具有如导通电阻增加量很小的优异的材料属性,并且有比导通电阻可能随着温度的升高而上升2倍以上的硅(Si)器件更优异的封装微型化和节能的优点。
型号- SCT3160KL,SCT4062KR,SCT3030KLHR,SCT4013DE,SCT3080AW7,SCT2450KE,SCT3160KW7,SCT2H12NZ,SCT4062KW7HR,SCT2450KEHR,SCT4013DR,SCT3060ALHR,SCT3040KRHR,SCT3060ARHR,SCT3040KLHR,SCT4036KEHR,SCT4045DRHR,SCT3022KLHR,SCT2160KE,SCT3080KW7,SCT3017ALHR,SCT3022AL,SCT3080ALHR,SCT3060AR,SCT3105KLHR,SCT4036KR,SCT3060AL,SCT4026DEHR,SCT4062KRHR,SCT3040KR,SCT2080KE,SCT3080KR,SCT3105KRHR,SCT3120AL,SCT4013DW7,SCT3030KL,SCT4062KWAHR,SCT4062KE,SCT3080ARHR,SCT4036KW7,SCT2280KEHR,SCT3120ALHR,SCT2280KE,SCT4062KWA,SCT3030AR,SCT3030AL,SCT3030AW7,SCT4036KRHR,SCT4045DEHR,SCT3120AW7,SCT3040KL,SCT3105KW7,SCT2080KEHR,SCT4018KW7,SCT4045DWA,SCT3080KL,SCT3030ALHR,SCT4062KW7,SCT3040KW7,SCT3022ALHR,SCT3030ARHR,SCT4045DW7,SCT3017AL,SCT4036KE,SCT4018KE,SCT4045DE,SCT4026DW7,SCT4062KEHR,SCT3080AR,SCT4026DW7HR,SCT4026DE,SCT4026DWA,SCT3160KLHR,SCT3080AL,SCT4045DW7HR,SCT4045DR,SCT2160KEHR,SCT3022KL,SCT4018KR,SCT4026DR,SCT4045DWAHR,SCT3105KL,SCT3160KW7HR,SCT3105KR,SCT3080KLHR,SCT3060AW7,SCT4026DRHR,SCT3080KRHR,SCT4026DWAHR
【经验】基于栅极驱动器BM6104FV-C与IXDD609的SiC MOSFET驱动电路设计
SiC MOSFET对驱动要求高,主要体现在驱动电压和驱动速度。SiC MOSFET标称驱动电压范围一般为-6~22V,其开启电压一般很低,并随温度上升而降低,但只有达到18-20V时,才能完全开通。硅器件的驱动电压最高一般为15V,所以驱动不能直接用于驱动SiC MOSFET。笔者针对应用要求,在实际设计中选用ROHM BM6104FV-C栅极驱动器并在后级添加力特的IXDD609进行功率放大。
ROHM提供支持电力电子仿真工具PSIM™的第4代SiC MOSFET仿真模型
全球知名半导体制造商ROHM(总部位于日本京都市)开始提供支持电力电子仿真工具PSIM™的第4代SiC MOSFET仿真模型。该模型可在Altair® US公司开发的电力电子和电机控制用的电路仿真工具PSIM™中使用。设计人员可从ROHM官网下载模型文件,轻松进行系统级评估。这一进展使得在更广泛的产业领域中进行高效设计和评估成为可能,并能进一步推动功率元器件的使用。
【经验】简析Sic MOSFET相对于IGBT器件的三个优势:低导通损耗、低开关损耗、高驱动电压条件下更低导通电阻
ROHM的SCT2080KEHR是1200V,导通电阻是80mΩ,电流40A,封装TO-247-3的车规级SiC MOSFET,驱动电压范围VGSS在 -6V~+22V,驱动范围比较窄。本文以CT2080KEHR为例,对比市场通用的1200V/40A的TO-247-3的IGBT单管,说明Sic MOSFET在导通损耗和开关损耗上更具优势。
【经验】以SIC MOSFET SCT3040KR为例说明SiC MOS应用中Vds关断尖峰的应对策略
在SiC MOS应用中,通常在mos关断过程中存在较大的Vds尖峰,主要原因在Turn ON 时流过的电流的能量储存在线路和基板布线的寄生电感中,并与开关元件的寄生电容共振所产生的。本文将以ROHM SiC MOSFET SCT3040KR为例说明SiC MOS应用中Vds关断尖峰的应对策略。
ROHM‘s 4th Generation SiC MOSFET Bare Chips Adopted in Three EV Models of ZEEKR from Geely
ROHM has announced the adoption of power modules equipped with 4th generation SiC MOSFET bare chips for the traction inverters in three models of ZEEKR EV brand from Geely, extending the cruising range and improves performance.
SCT2H12NZ 1700V高耐压SiC MOSFET
型号- SCT2280KE,SCT212AF,SCT2450KE,SCT2160KEAHR,SCT2450KEAHR,SCT2H12NZ,SCT3022KL,SCT2080KE,SCT3040KL,SCT3030KL,BD7682FJ-LB-EVK-402,SCH2080KE,SCT2H12NYSCT2750NY,SCT2080KEAHR,SCT2280KEAHR,SCT2160KE
【产品】采用TO263-7L封装的AC/DC转换器IC适用于通用逆变器, 内置1700V耐压的SiC MOSFET
ROHM推出的BM2SC12xFP2-LBZ是业内先进的AC/DC转换器IC,采用一体化封装, 内置1700V耐压SiC MOSFET,使采用了SiC MOSFET的高效AC/DC转换器的设计更容易。
罗姆第4代SiC MOSFET裸芯片批量应用于吉利集团电动汽车品牌“极氪”3种主力车型
日前,搭载了罗姆第4代SiC MOSFET裸芯片的功率模块成功应用于“极氪”电动汽车3种车型的主机逆变器上,有助于延长车辆续航距离以及提高性能。
SiC MOSFET 5kW 高效率无风扇逆变电路
描述- 采用了发挥碳化硅(SiC)MOSFET高频特性的Trans-link交错型逆变电路(1)、实现了5kW时的功率转换效率达到99%以上。在该电路拓扑中,平滑电抗器的电感量可以减小。由于电抗器的匝数减少、使铜损大幅度减少实现了高效率。在这份资料中,介绍这个全新的逆变器设计的例子。
型号- PS2501L-1,MCR18ERTJ200,NJM78L05UA,MCR03EZPJ332,MCR03EZPJ334,RK73B1JTTD104J,PC092-01-00,B4B-XH-A,TR10P,DE1E3KX222MA4BN01,RK73B1JTTD472J,GRM188B31H104KA92,RB751S-40,MB3P-90,RK73B2BTTD105J,RK73B2BTTD4R7J,PH-1X10RG2,RK73B1JTTD103J,B5B-PH-K-S,PH-2X09SG,SSM3K318T,GRM1851X1H472JA44,KRB-408,GRM188B11H103KA01,HOT-2608B,ELXZ350ELL101MF15D,TLP700A,SCT3030AL,GRM188R11H104KA93,MCR10ERTJ4R7,TC4069UBF,RK73B1JTTD102J,PC045-00-00,S4B-EH,MOSX1C1R0J,NJM431U,GRM185B31E105MA12,DE1E3KX102MA4BN01,2SCR542P,GRM188R71E104KA01,PH-2X04SG,FHU-2×4SG,MCR10EZPJ105,PH-2X08SG,RK73B1JTTD153J,RK73B1JTTD101J,MCR03EZPJ101,ADR-48-50-0R5YA,MCR03EZPJ102,MCR03EZPJ103,24LC64SN,EG01C,MCR03ERTJ302,CQ-3303,CT-6E-P5KΩ,TR008A,1SS355,NE555D,ECQE6103KF,MCR18ERTJ4R7,ES1A,GRM188B11H102KA01,PC089-01-00-50P,NJM2732M,BFC233920105,MB4P-90,MCR03ERTJ331,B3P-VH,TBD,STR-A6079M,ACPL-C87AT,SCS212AM,MCR18ERTJ1R0,TRANS-LINK,GRM1851X1H222JA44,2SAR542P,MOSX1C334J,MCR03ERTJ202,FHU-2X9SG,VDCT,UDZS5.1B,ECQE6104KF,ELXZ100ELL681MF15D,S3B-EH,RK73B1JTTD271J,2SC3325,PH-1X04SG,MCR03EZPJ152,GRM188R71E105KA12,ELXS451VSN561MA50S,GRM21BR71E105KA99,MCR03ERTJ470,RK73B1JTTD470J,SCT3017AL,RK73B2BTTD563J,RK73B1JTTD000J,TA48M05F,MCR03ERTJ102,MCR03ERTJ103,SBR1U150SA-13,FHU-2X8SG,450MPH105J,UCS2W220MHD
ROHM 4th Gen SiC MOSFET Simulation Models for PSIM™ Now Available
ROHM has begun offering 4th Gen SiC MOSFET simulation models compatible with PSIM™, a circuit simulator designed for power electronics and motor drive developed by Altair®. Designers can now easily download model files to perform system-level evaluations, allowing for efficient design and evaluation across a wire range of industrial sectors, further promoting the use of power devices.
【经验】如何通过增加栅极电容的方式减缓SiC MOSFET 的米勒效应
SiC MOSFET 同Si 基MOSFET和IGBT一样,由于存在米勒电容,都会有米勒效应的存在。由于SiC材料所带来的优势,SiC MOSFET可以工作在更高开关频率下,这样就会面临更严峻的误触发现象。所以在驱动电路设计中需要增加相关设计,使之能够较为有效地避免误触发。本文将主要介绍增加栅极电容的方式。
电子商城
现货市场
服务
定制液冷板尺寸5mm*5mm~3m*1.8m,厚度2mm-100mm,单相液冷板散热能力最高300W/cm²。
最小起订量: 1片 提交需求>
可根据用户的MOSFET管进行参数检测出具报告,静态参数最大电压:7500V、检测最大电流6000A;动态参数最大电压:3300V、检测最大电流:4500A。该测试标准满足GB、IEC及行业标准等,具备可靠性评估及老化实验能力。
实验室地址: 西安 提交需求>
登录 | 立即注册
提交评论