【经验】用于实时时钟RTC的32. 768kHz集成晶体振荡电路的实现方法
引言
在很多数字集成电路中都要用到实时时钟(RTC , Real Time Clock) 电路,而确保RTC 工作计时准确的关键部分就是32.756kHz 的晶体振荡电路。
传统的RTC电路是采用反相器对晶振产生的波形做整形,所用起振时间需要几个ms ,如果用过多的反相器会加大电路功耗。本文将基于EPSON 的32.768KHz晶振FC-135/FC-135R贴片音叉晶振或者C2系列圆柱体晶振(32.768kHz的晶体谐振器)提出一种用晶体起振电路模型和比较器搭建的晶振电路,晶振模型部分用于产生32. 768kHz的正弦波,比较器部分将波形整形为最终需要的时钟波形。本文中所介绍的整个晶振电路的起振时间只需要几个μs ,而且电路所需静态电流少,耗功率小,版图所占面积也小。整个电路用基于Hspice 做了仿真,验证了电路各参数的准确性及电路的可实现性,并已成功流片并用于基于0. 18μm工艺下的某系列音频芯片中,为其提供实时时钟。
1 电路结构
图1 所示为振荡电路结构框架,将晶振模型产生的正弦信号IN 和OUT 作为输入,进入比较器比较后,产生稳定的32k 时钟波形。
图1:晶振的整体电路
2 具体电路分析
按晶振部分和比较器部分分别给出具体电路的分析。
2. 1 晶振部分的电路分析
图2 所示是晶振部分所用的具体电路,其中,R1 , C1 ,L1 , Cp 是晶体的等效模型电路。R1 是晶体的等效串联电阻,其值表示晶体的损失,L1 , C1 分别为晶体的等效串联电感和电容,这两个值决定晶体的振荡频率为32. 785kHz ( f = 1P2pi √LC) , Cp 是晶体输入输出引脚间的电容,其值为5 p , Cl1 , Cl2 是晶体的负载电容。图2 中NMOS管M1 作为一个单级反相放大器通过晶振等效电路形成正反馈,从而和栅源( G , S) ,漏源( D , S) 之间的两个负载电容一起形成Pierce 振荡电路的结构。Ribias 和Rg 为NMOS管提供偏置电压。该晶振部分电路在满足巴克豪林准则的条件下可以振荡。
图2:晶振部分的具体电路
以下通过负阻的角度来分析电路的工作原理,图3 所示为晶振部分等效串联谐振电路,其中NMOS 管M1 和Cl1 , Cl2 的阻抗可以等效为:
其具体等效方法为: 设流进OUT 点的电流为I ,Ribias 两端的电压为V ,NMOS 管上的漏电流为gmVIN ,则:
联立这两个式子,消去VIN 即可得到:
从而,起振电路的等效阻抗:
如果要维持电路振荡,必须保持Zc 的实部与R1 之和是零或者负值,这就对gm 的值提出了要求。
gm 的最小值可以用以下方法估计:
忽略Ribias和Cp ,设定Cl1 = Cl2 = C , Zc 即可简化成:
Zc 实部的绝对值要大于等于R1,所以有:
根据上述条件设定晶振部分电路各器件参数,以满足晶振起振条件后,晶振输入输出端XIN 和XOUT 分别会产生相位相反的正弦信号。
图3:晶振电路的等效电路
2. 2 比较器部分的电路分析
电路中的比较器电路结构如图4 所示,晶振产生的两个幅度相等相位相反的信号作为输入进入比较器输入。
图4:比较器电路
M1 - M4 构成伪电流源差分放大器,M5 和M6用来提高输入管M3 和M4 的gm ,M7 和M8 是用输出电压作为其栅极电压,从而控制M3 和M4 的连接与否。当V IN > VOUT时,M3 的漏电流大于M4 上的漏电流,而M1上的电流镜像到M2上,于是M2上的电流大于M4 上的电流,多余的电流将流进反相器1 ,由于反相器的输入电容,电流转化成电压,此时可以认为是数字高电平1 ,那么输出也即为高电平,M7管导通,M5 增加了M3 的gm ,进一步增加反相器1的输入电压,从而使得输出高电平更稳定;反之,当V IN < VOUT时,M3 的漏电流小于M4 上的漏电流,同样M1 上的电流镜像到M2 上,于是M2 上的电流小于M4 上的电流,因此反相器1 的输入电容放电补充这部分电流,此时可以认为反相器1 的输入电压是数字低电平0 ,那么输出也即为低电平,M8 管导通,M6 增加了M4 的gm ,从而将反相器1 的输入电压下拉至更低电平,从而使得输出低电平更稳定。
由于比较器电路的输入电阻趋于无穷大,所用工艺下输入电容数量级为f F , 因此整个电路与晶振电路连接时不会对晶振电路造成影响。
现分析其具体性能如下:
最大输出电压为:
最小输出电压为:
比较器的传输时延为:
其中Id(M4)是M4管的漏电流,由于电路采用的伪电流源的结构,所以M4管的漏电流允许很大,所以使得比较器的传输时延可以很短。
C 是M4 管源端的结点电容,即:
其中,Cin 是反相器的输入电容。
比较器的频率响应可以表示为:
其中
3 电路设计及仿真
图2 所示电路搭建仿真模型用Hspice 进行仿真。图2 中需要给电路提供一个直流电平,所以在OUT 端连接一个PMOS 管,其源端接电源,漏端和栅端接在OUT 点,作为一个等效电阻。考虑到图1 中NMOS 管的gm 大小的限制,经过计算取WPL =2μP8μ,其gm = 9. 5μs.负载电容Cl1 和Cl2 取10μ,以确保晶振的振荡频率为32. 768kHz , 在实际仿真中可以对负载电容进行调整以获得准确的振荡频率。Ribias 一般取10M 到25M 之间,当Ribias 增大时,NMOS 管的反相放大器的增益增大,此时振荡器的起振时间变小。另外,仿真时为了让电路起振需要在IN 端给一个电流扰动。该部分的仿真结果如图5 所示,IN 和OUT 两端正反馈过程明显,从而产生相位相反的正弦信号。
图5:晶振电路部分IN 和OUT端的电压波形
图4 中要求比较器有较高的增益,带宽超过32. 768kHz ,根据给定的输出最大最小值和传输时间设计好各个管子的宽长比后,仿真得到如图6 所示的比较器的传输曲线。
图6:比较器的传输特性曲线。
由图6 可测得,VOH = 1. 738V ,VOL = 2. 46mV ,失调电压VOS = 21. 28mV。
将图2 晶振部分与图4 比较器部分连接后仿真,输出的时钟波形如图7 所示,可以看出其起振时间为625μs ,由于采用的伪电流结构和M5~ M8 的作用,其上升时间仅为0. 017μs , 下降时间仅为0. 008μs.对比用反相器作为整形电路的结构,其起振时间为2ms ,如图8 所示,其最终输出的时钟波形也比用比较器结构的差,例如失真度较高,尽管反相器的管子的宽长比很大,波形的上升时间和下降时间也很长,而且它的低电平部分不能完全到达0V。
图7:晶振整体电路的输出时钟波形
图8:用反相器整形后输出时钟波形
通过仿真可得,该电路的功耗为2. 4292μW。综上所述,比较器电路的仿真结果如表1 所示,整个晶振电路的仿真结果如表2 所示。
表1:比较器电路仿真结果
表2:整个振荡电路仿真结果
4 结束语
本文提出了一种用于实时时钟RTC 的32. 768kHz 集成晶体振荡电路的实现方法,采用晶振和比较器的结构,文中分别给出了这两部分的具体电路和分析,并使用Hspice 对所设计的电路进行仿真,从而验证了该电路起振时间短,波形稳定,功耗低等特点。
- |
- +1 赞 0
- 收藏
- 评论 3
本网站所有内容禁止转载,否则追究法律责任!
评论
全部评论(3)
-
时不我待 Lv7. 资深专家 2018-11-10学习了
-
三3三 Lv8. 研究员 2018-06-29学习了
-
aegean Lv5. 技术专家 2017-11-18好资料,请问用在哪个芯片上?
相关推荐
【技术大神】智能电表应用:实时时钟芯片RX8025T的电源设计
本文介绍了三种电路措施,以及软件、PCB、生产制程的控制,使RX8025T实时时钟芯片在常规环境下,满足“且在不更换电池且电表断电的情况下,维持电表时钟正确工作的时间不少于5年” 的要求。
设计经验 发布时间 : 2016-12-27
【经验】EPSON RTC实时时钟RX-8010SJ上电工作异常详情排查及解决办法
Epson的RX-8010SJ实时时钟模块,采用C-MOS工艺,可靠性很高,频率老化为5×10-6/每年,工老化率均低于同类产品,工作寿命长。另外还具有时刻、日历、警报器和定时器等功能。1.1V~5.5V,备份模式下额定功耗电流只有160nA,可见该元件具功耗很低,可满足客户更广泛的市场应用。本文 讲述了在温控器中RTC实时时钟RX-8010SJ上电工作异常详情排查及解决办法。
设计经验 发布时间 : 2018-10-16
【经验】实时时钟模块RX8010SJ精度的软件校准方法
本文介绍使用RX8010SJ的内部软件校准的方法,可一定程度上提供其在高温或低温环境的精度。
设计经验 发布时间 : 2017-10-07
爱普生精度可达±3.4ppm的RTC模块,实时时钟的明智之选
作为全球技术先进的企业爱普生公司,推出了内嵌温度补偿晶体振荡器的实时时钟模块RX8900系列。该系列与爱普生公司的RA8900系列RTC同时发布,前者专供民用,后者主要用于汽车电子应用。高精度、小型化和尖端温度补偿技术是RX8900的主要技术优势。
产品 发布时间 : 2024-05-22
爱普生RTC具有小型化封装和高可靠性、稳定可靠的高时钟精度和超低功耗特点
爱普生RTC的特点:①小型化封装和高可靠性,IC和晶体一体化封装技术,内置电源切换电路 的型号支持;②稳定可靠的高时钟精度,RTC出厂精度调校,内置DTCXO的型号满足全温范围内高精度计时要求;③超低功耗,满足长期时钟保持要求并可采用小容量电池或电容。
产品 发布时间 : 2024-05-20
基于EFM32JG/PG的智能手环低功耗整体解决方案,低功耗、小体积
智能手环方案可直接输出心率值,且具有低功耗、小体积等特点,是目前典型方案中的质优方案。
方案 发布时间 : 2017-05-25
【经验】实时时钟模块RX-8010SJ高温“死机”详情原因排查
本文通过实际案例呈现EPSON实时时钟模块RX-8010SJ在高温测试中出现“死机”的详情原因。
设计经验 发布时间 : 2017-08-04
利用爱普生的RTC实时时钟模块+Panasonic电池实现系统级的低功耗
Epson的RTC模块优于具有单独Xtal的通用RTC,尤其适用于物联网和电源关键应用。以Epson的RX8111, RX4111, RX8010SJ 等为例,将RTC电路与32.768 kHz晶振集成到模块中。
设计经验 发布时间 : 2024-04-14
请问RX8025T和RX8025SA的区别是什么?
RX8025T内置高稳定性32.768kHz的DTCXO(数字温度补偿晶体振荡器)可保证在全温度范围内的精度保持在±5ppm。RX8025SA内置32.768 kHz 石英振荡器,不具有温度补偿功能。另,RX8025T比RX8025SA少一路中断输出。其他功能相同,外围硬件电路可兼容。
技术问答 发布时间 : 2016-12-09
Epson(爱普生) 实时时钟芯片(RTC)RA8900SA/CE数据手册
型号- RA8900SA,X1B000282A00500,X1B000271A00600,X1B000271A00500,X1B000271A00511,RA8900,X1B000271A00400,X1B000271A00411,RA8900CE,X1B000282AXXX00,RA8900CE UC,RA8900CE UA,RA8900CE UB
实时时钟模块RX-4045SA为嵌入式电子产品提供精准计时,在工作温度范围内能保持稳定的信号
RX-4045SA实时时钟模块内置温度补偿功能的高精度石英晶体振荡器,工作频率范围为32.768kHz,通过频率调整可获得高精度,相当于每月±13秒的偏差。这意味着无论环境温度或湿度水平等外部环境因素如何变化,都能保持稳定的时钟信号。此外,实时时钟模块还集成了集成电池备份电路,使其能够在断电或系统重置期间保留当前时间和日期值。
产品 发布时间 : 2023-11-22
内置32K晶体RTC优势分析
为了给客户提供高精度、高可靠性、具有多种接口、功能丰富的RTC 产品,EPSON为客户提供内置32k晶体的各种接口以及具有附加功能的RTC产品。
设计经验 发布时间 : 2019-07-23
Epson(爱普生) 实时时钟模块(RTC)RX-8130CE数据手册
型号- RX8130CE,X1B000311000100,X1B000311000111,RX-8130CE,X1B000311XXXX00
【产品】Epson新品低功耗时钟模块(RTC),待机电流仅100nA | 视频
在2021年4年23日时钟专场|世强硬创新产品研讨会中,EPSON技术专家为我们带来了3225封装低功耗实时时钟模块(RTC)。最新推出的实时时钟模块(RTC)待机电流低至100nA,且内置32.768Khz晶体和匹配电容。
产品 发布时间 : 2023-11-17
电子商城
品牌:EPSON
品类:REAL TIME CLOCK MODULE (I²C-Bus)
价格:¥3.9139
现货: 30,323
品牌:EPSON
品类:REAL TIME CLOCK MODULE (I²C-Bus)
价格:¥4.8920
现货: 14,886
品牌:EPSON
品类:REAL TIME CLOCK MODULEE (I²C-Bus)
价格:¥4.8920
现货: 10,845
现货市场
服务
提供CE测试服务,通过晶体回路匹配分析,给出测试报告。支持EPSON所有MHz无源晶体、32.768KHz晶体。支持到场/视频直播测试,资深专家全程指导。
实验室地址: 深圳/上海 提交需求>
测试范围:扬兴晶振全系列晶体,通过对晶体回路匹配分析,调整频率、驱动功率和起振能力,解决频偏、不起振、干扰、频率错误等问题。技术专家免费分析,测完如有问题,会进一步晶振烧录/修改电路。
实验室地址: 深圳 提交需求>
登录 | 立即注册
提交评论