【经验】MOS管正确选择的步骤
正确选择MOS管是很重要的一个环节,MOS管选择不好有可能影响到整个电路的效率和成本,了解不同的MOS管部件的细微差别及不同开关电路中的应力能够帮助工程师避免诸多问题,下面虹美功率半导体将为大家介绍MOS管的正确的选择方法。
第一步:选用N沟道还是P沟道
为设计选择正确器件的第一步是决定采用N沟道还是P沟道MOS管。在典型的功率应用中,当一个MOS管接地,而负载连接到干线电压上时,该MOS管就构成了低压侧开关。在低压侧开关中,应采用N沟道MOS管,这是出于对关闭或导通器件所需电压的考虑。当MOS管连接到总线及负载接地时,就要用高压侧开关。通常会在这个拓扑中采用P沟道MOS管,这也是出于对电压驱动的考虑。
要选择适合应用的器件,必须确定驱动器件所需的电压,以及在设计中最简易执行的方法。下一步是确定所需的额定电压,或者器件所能承受的最大电压。额定电压越大,器件的成本就越高。根据实践经验,额定电压应当大于干线电压或总线电压。这样才能提供足够的保护,使MOS管不会失效。就选择MOS管而言,必须确定漏极至源极间可能承受的最大电压,即最大VDS。知道MOS管能承受的最大电压会随温度而变化这点十分重要。设计人员必须在整个工作温度范围内测试电压的变化范围。额定电压必须有足够的余量覆盖这个变化范围,确保电路不会失效。设计工程师需要考虑的其他安全因素包括由开关电子设备(如电机或变压器)诱发的电压瞬变。不同应用的额定电压也有所不同;通常,便携式设备为20V、FPGA电源为20~30V、85~220VAC应用为450~600V。
第二步:确定额定电流
第二步是选择MOS管的额定电流。视电路结构而定,该额定电流应是负载在所有情况下能够承受的最大电流。与电压的情况相似,设计人员必须确保所选的MOS管能承受这个额定电流,即使在系统产生尖峰电流时。两个考虑的电流情况是连续模式和脉冲尖峰。在连续导通模式下,MOS管处于稳态,此时电流连续通过器件。脉冲尖峰是指有大量电涌(或尖峰电流)流过器件。一旦确定了这些条件下的最大电流,只需直接选择能承受这个最大电流的器件便可。
选好额定电流后,还必须计算导通损耗。在实际情况下,MOS管并不是理想的器件,因为在导电过程中会有电能损耗,这称之为导通损耗。MOS管在“导通”时就像一个可变电阻,由器件的RDS(ON)所确定,并随温度而显著变化。器件的功率耗损可由Iload2×RDS(ON)计算,由于导通电阻随温度变化,因此功率耗损也会随之按比例变化。对MOS管施加的电压VGS越高,RDS(ON)就会越小;反之RDS(ON)就会越高。对系统设计人员来说,这就是取决于系统电压而需要折中权衡的地方。对便携式设计来说,采用较低的电压比较容易(较为普遍),而对于工业设计,可采用较高的电压。注意RDS(ON)电阻会随着电流轻微上升。关于RDS(ON)电阻的各种电气参数变化可在制造商提供的技术资料表中查到。
需要提醒设计人员,一般来说MOS管规格书标注的Id电流是MOS管芯片的最大常态电流,实际使用时的最大常态电流还要受封装的最大电流限制。因此客户设计产品时的最大使用电流设定要考虑封装的最大电流限制。建议客户设计产品时的最大使用电流设定更重要的是要考虑MOS的内阻参数。
技术对器件的特性有着重大影响,因为有些技术在提高最大VDS时往往会使RDS(ON)增大。对于这样的技术,如果打算降低VDS和RDS(ON),那么就得增加晶片尺寸,从而增加与之配套的封装尺寸及相关的开发成本。业界现有好几种试图控制晶片尺寸增加的技术,其中最主要的是沟道和电荷平衡技术。
在沟道技术中,晶片中嵌入了一个深沟,通常是为低电压预留的,用于降低导通电阻RDS(ON)。为了减少最大VDS对RDS(ON)的影响,开发过程中采用了外延生长柱/蚀刻柱工艺。例如,飞兆半导体开发了称为SupeRFET的技术,针对RDS(ON)的降低而增加了额外的制造步骤。这种对RDS(ON)的关注十分重要,因为当标准MOSFET的击穿电压升高时,RDS(ON)会随之呈指数级增加,并且导致晶片尺寸增大。SuperFET工艺将RDS(ON)与晶片尺寸间的指数关系变成了线性关系。这样,SuperFET器件便可在小晶片尺寸,甚至在击穿电压达到600V的情况下,实现理想的低RDS(ON)。结果是晶片尺寸可减小达35%。而对于最终用户来说,这意味着封装尺寸的大幅减小。
第三步:确定热要求
选择MOS管的下一步是计算系统的散热要求。设计人员必须考虑两种不同的情况,即最坏情况和真实情况。建议采用针对最坏情况的计算结果,因为这个结果提供更大的安全余量,能确保系统不会失效。在MOS管的资料表上还有一些需要注意的测量数据;比如封装器件的半导体结与环境之间的热阻,以及最大的结温。
器件的结温等于最大环境温度加上热阻与功率耗散的乘积(结温=最大环境温度+[热阻×功率耗散])。根据这个方程可解出系统的最大功率耗散,即按定义相等于I2×RDS(ON)。由于设计人员已确定将要通过器件的最大电流,因此可以计算出不同温度下的RDS(ON)。值得注意的是,在处理简单热模型时,设计人员还必须考虑半导体结/器件外壳及外壳/环境的热容量;即要求印刷电路板和封装不会立即升温。
雪崩击穿是指半导体器件上的反向电压超过最大值,并形成强电场使器件内电流增加。该电流将耗散功率,使器件的温度升高,而且有可能损坏器件。半导体公司都会对器件进行雪崩测试,计算其雪崩电压,或对器件的稳健性进行测试。计算额定雪崩电压有两种方法;一是统计法,另一是热计算。而热计算因为较为实用而得到广泛采用。除计算外,技术对雪崩效应也有很大影响。例如,晶片尺寸的增加会提高抗雪崩能力,最终提高器件的稳健性。对最终用户而言,这意味着要在系统中采用更大的封装件。
第四步:决定开关性能选择
MOS管的最后一步是决定MOS管的开关性能。影响开关性能的参数有很多,但最重要的是栅极/漏极、栅极/源极及漏极/源极电容。这些电容会在器件中产生开关损耗,因为在每次开关时都要对它们充电。MOS管的开关速度因此被降低,器件效率也下降。为计算开关过程中器件的总损耗,设计人员必须计算开通过程中的损耗(Eon)和关闭过程中的损耗(Eoff)。MOSFET开关的总功率可用如下方程表达:Psw=(Eon+Eoff)×开关频率。而栅极电荷(Qgd)对开关性能的影响最大。
- |
- +1 赞 0
- 收藏
- 评论 0
本文由奶爸工程师转载自虹美功率半导体,原文标题为:MOS 管正确选择的步骤,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
相关推荐
【经验】BMS应用笔记:详解功率MOS管
由于锂电池的特性,在应用过程中需要对其充放电过程进行保护,避免因过充过放或过热造成电池的损坏,保证电池安全的工作。本文虹美功率半导体将介绍功率MOS管在BMS系统中的常见失效类型,以及如何预防改善。
【经验】详解PWM驱动MOS管H桥电路分析
H桥是一个典型的直流电机控制电路,因为它的电路形状酷似字母H,故得名与“H桥”。4个三极管组成H的4条垂直腿,而电机就是H中的横杠。本文HI-SEMICON详解MOS管H桥电机驱动电路图。
七步掌握MOS管选型技巧
选择一款正确的MOS管,可以很好地控制生产制造成本,最为重要的是将会确保设备得到最高效、最稳定、最持久的应用效果。那么面对市面上琳琅满目的MOS管,该如何选择呢?本文中音特电子就分7个步骤来阐述MOS管的选型要求。
【产品】智芯科技推出的三相MOS管栅极驱动Z20A8300A系列,具有5.5V-50V持续工作电压
Z20A8300A是智芯科技应用于汽车中、大功率电机控制的三相MOS管栅极驱动,可在5.5V至50V的电源范围内驱动6个N-MOS管。ZA0A8300A三个半桥可以独立运行,也可以作为无刷直流电机或永磁同步电机的三相桥驱动器。
MOS管的常见应用领域分析
MDD辰达半导体将详细分析MOS管的常见应用领域及其在其中发挥的作用。MOS管凭借其高开关速度、低功耗和小体积,广泛应用于电源管理、信号处理、汽车电子、消费电子、工业自动化、可再生能源以及医疗电子等领域。在每个应用领域中,MOS管以其独特的电气特性和稳定的性能支撑着现代电子设备的高效运行。
屹晶微电子大功率MOS管EG2121,高端的工作电压可达250V,最高频率支持500KHz
EG2121是一款高性价比的大功率MOS管、IGBT管栅极驱动专用芯片,内部集成了逻辑信号输入处理电路、死区时控制电路、欠压关断电路、闭锁电路、电平位移电路、脉冲滤波电路及输出驱动电路,专用于无刷电机控制器中的驱动电路。
【技术】解析MOS管的工作原理
MOS(金属-氧化物-半导体)管是一种常见的场效应晶体管(FET),常用于放大和开关电路中。MOS管主要由一片半导体晶体片(通常是硅)和相连的两个金属电极组成,它们之间隔着一层氧化物。本文中合科泰电子将为大家解析MOS管的工作原理。
详解耗尽型MOS管在电路中的应用
耗尽型MOS管在电路设计中具有多种重要应用。其高输入阻抗、低输出阻抗、快速开关速度和高可靠性等特性使得它成为电子领域中不可或缺的元件之一。
【产品】耐压可达600V的高性价比MOS管驱动芯片EG2106
屹晶微电子的EG2106是一款高性价比的MOS管、IGBT管栅极驱动专用芯片,内部集成了逻辑信号输入处理电路、欠压保护电路、电平位移电路、脉冲滤波电路及输出驱动电路,专用于无刷电机控制器、电源DC-DC中的驱动电路。
【产品】带SD功能MOS管驱动EG2104,静态功耗小于1uA
屹晶微电子的EG2104是一款高性价比的带SD功能的MOS管、IGBT管栅极驱动专用芯片,内部集成了逻辑信号输入处理电路、死区时控制电路、电平位移电路、脉冲滤波电路及输出驱动电路,专用于无刷电机控制器、电源DC-DC中的驱动电路。
专业的MOS管/IGBT/Sic MOS管/Sic二极管/GaN FET一站式/高性价比功率半导体解决方案!
虹美功率半导体 - 高速风筒MOS,带FRD高压MOS,高压PMOS,超高压平面MOS,全桥驱动MOS,IGBT,GAN FET,氮化镓场效应管,VDMOS,超轻薄小封装MOS,N+P大电流MOS,SJ MOS公司,VBUS开关SGT MOS,莫斯中士,SIC MOS管,USB PD快充GAN FET,大电流沟槽MOS,P沟道SGT MOS,超薄小封装MOS,SJ MOS,SGT MOS,大电流PMOS,半桥串联驱动MOS,高压超结MOS,MOS管,高压平面MOS,SIC二极管,IGBT单管,USB PD快充同步整流SGT MOS,缝纫机,电动车,家电市场,储能市场,电动工具保护板,电动工具驱动板,BMS,电磁炉,光伏储能
60V/50A的N沟道MOS场效应管SL50N06D,具有高频率、大电流、抗冲击能力强等优点
SL50N06D是一款N沟道MOS场效应管,采用先进的Trench技术生产。其具有较高的漏源电压(60V)和连续漏极电流(50A),具有高频率、大电流、抗冲击能力强等优点。它在BLDC电机技术领域不仅能够提高电力传动系统的效率和性能,还能够实现更加智能化的控制,通过对电机相电流进行高精度调控,实现了电机的高效、平稳运行。
【应用】Laird导热矽胶布Tgard 5000为车载充电机MOS管提供热设计方案,耐击穿电压达可6KV
在新能源汽车充电机线路板上的MOS管散热应用上,莱尔德导热矽胶布Tgard 5000在ASTM D149的标准下耐击穿电压达到6KV以上,完全满足车载的需求。而且莱尔德导热矽胶布Tgard 5000可以根据不同MOS管的封装提供模切服务,如TO-220, TO-247, TO-3P, TO-3PL and TO-264封装等。
大功率扫地机器人性能升级的优选方案——台懋MOS管TM50G03NF,具备较低导通电阻,IDM可达150A
在大功率扫地机器人的核心部件——直流无刷电机中,MOS管不仅起到了关键的开关作用,还通过PWM调速、过流保护等功能提高了电机的性能和可靠性。台懋科技是一家专注于中低压MOS的公司,其TM50G03NF在三相驱动器有导通电阻较低、高电流承载能力、100%UIS测试、100%Rg测试、结温范围在-55%~175%等优势。
电子商城
现货市场
服务
定制液冷板尺寸5mm*5mm~3m*1.8m,厚度2mm-100mm,单相液冷板散热能力最高300W/cm²。
最小起订量: 1片 提交需求>
可定制单位/双位/三位/四位LED数码管的尺寸/位数/发光颜色等性能参数,每段亮度0.8~30mcd,主波长470~640nm,电压2~10.2V。
最小起订量: 1000 提交需求>
登录 | 立即注册
提交评论