Optimizing Fast Charging with Electric Vehicle Sensors
Ask any driver what’s the most important feature of their car or truck, and most will likely say the ability to safely get from point A to point B. That is, after all, the primary function of a vehicle.
The last thing any car owner wants is to find their vehicle isn’t ready when they are. An empty tank of gas won’t get them to that important client meeting or their kid’s soccer tournament.
While electric vehicles (EV) use a different fuel source than their traditional combustion engine counterparts, that doesn’t change an owner’s expectation of their vehicle -- or fleet of vehicles -- for immediate, on-demand transportation.
With the rapid expansion of EVs on the market already underway, keeping them fueled -- or fully charged -- is a major concern. Despite advances in battery technology, there’s still a perception that electric vehicles will run out of juice at the worst possible time -- stranded miles away from a charging station. What’s more, gas-powered vehicle owners are used to refueling taking only a few minutes. How can charging an electric vehicle ever approach that speed and convenience?
Coupled with longer-lasting power banks, fast-charging EV technology meets these concerns -- and makes electric vehicles a viable alternative to those powered by fossil fuels.
Even still, fast-charging technology and an accompanying infrastructure of charging stations aren’t enough to help potential EV consumers overcome worries about time lost re-energizing. To those looking for a seamless transition to driving an electric vehicle, actual results matter. electric vehicle sensors are necessary for making charging nearly as quick as fueling up at a gas station.
Fast charging & its potential impacts on ev battery health
A missing puzzle piece in the early days of electric vehicle development, new fast-charging technology is responsible in part for the ongoing electrification of transportation.
While fast-charging systems make the conversion to electric vehicles more practical, they can’t be used without proper monitoring.
Why? The primary byproduct of fast charging is heat, especially when converting electrical current from AC to DC. Heat is an electric vehicle battery pack’s worst enemy. EV batteries of any size are designed to perform within a range of 15-45°C. Exposure to high temperatures outside of that range has harmful effects on an EV battery’s health, impacting its:
Ability to hold a charge: Overheating can severely hamper a battery’s ability to stay charged and extremely cold ambient temperatures can also harm batteries when charging through the formation of dendrites
Charging capacity: Exposure to high temperatures reduces an EV battery pack’s capacity. With less lithium present, there’s less to charge.
Useful life: Rechargeable batteries of any size -- from AAA to those powering an airplane -- are designed to last a few thousand charge cycles. Damage from excessive heat can reduce a battery’s usefulness by several years.
Safety: Overheated EV battery cells begin to decompose, triggering thermal runaway -- a chain reaction that may start a fire.
3 places electric vehicle sensors are necessary to monitor fast charging
Ensuring that high-speed EV charging is safe and efficient starts and stops with sensor technology. Fast charging requires fast-response sensors -- primarily vehicle temperature sensors.
Without real-time monitoring that triggers the systems that maintain ideal temperatures, the risk of heat damage to an EV’s components increases drastically.
There are three places in an electric vehicle where temperature sensors are a must for fast charging:
Charge handle connection point
Thermal management system
Inside the battery pack
1. charge handle connection point
Temperature sensors are a must in two places at the point of connection: the charging port and the charging handle.
To charge quickly, many electrons need to pass from the EV service equipment to the vehicle battery quickly. This high current generates heat. High temperatures within the charging port may indicate there’s a poor connection between the charging handle and the EV’s contacts. From an efficiency standpoint, a poor connection means the vehicle isn’t charging as quickly as it should be. In addition, high temperatures from an EV quick charger’s connector are also a sign the charger is overtaxed by the power demand, or that it’s starting to malfunction.
2. the thermal management system
Overheating within an EV’s thermal management system is an immediate signal that it’s not working as intended and its components are running hot, such as:
Heat exchangers
Cooling plates
Coolant fluids
Refrigerants
Dielectric oils
Excessive temperatures are also a sign that the EV cooling system is being overwhelmed by excessive heat from the parts they’re supposed to be cooling.
3. inside the battery pack
Arguably the worst place for overheating, an EV’s battery pack must be kept within the range of 15-45°C to preserve its integrity and safety. Lithium-ion cells charge well when they are between 45 and 60C, but can suffer damage slightly above those temperatures when charging. When in-pack temperatures go beyond that range, the vehicle may go into safe mode and shut down, or worse, start the process of thermal runaway.
A battery overheating is one of the last indicators that something isn’t right with the vehicle’s charging or thermal management systems, or the battery itself is malfunctioning.
To maintain the battery’s long-term functionality and safety, immediate cooling is a necessity.
the future of ev fast charging
The development of fast-charging technology is far from finished. With existing fast-charging technology, it takes around 30 minutes to re-energize an EV's battery to 80%. However, engineers are still working to make fully charging an EV as fast as filling up an ICE vehicle’s empty gas tank -- a process that typically takes less than 10 minutes.
The demands for ultra-fast electric vehicle charging aren’t entirely being driven by the desire for convenience. Ground transit companies and those with fleets of large vehicles (semis and buses) are all but demanding ultra-fast charging, which could have their vehicles mobile within a matter of minutes.
Put simply, larger vehicles have battery packs several times bigger than those used in electric cars. They take longer to charge. But time spent charging represents lost productivity and income.
Fast-response sensors that monitor heat throughout an EV are critical to:
Putting vehicles back in service faster
Preventing battery degradation or damage
electric vehicle sensors & fast-charging systems: a necessary pairing
Though electrification is one of the biggest transitions in the history of transportation, vehicle owners and operators still have a certain level of expectation for functionality. Fast-charging technology is making this shift possible as it meets a major concern head-on. Electric vehicle sensors are the unsung hero in making EV charging as uneventful as filling up a gas tank.
Integrate the right sensors for fast charging in your ev design,Speak with AMPHENOL SENSORS about the electric vehicle sensors they offer today.
- |
- +1 赞 0
- 收藏
- 评论 0
本文由xingzhibo转载自Amphenol Sensors,原文标题为:OPTIMIZING FAST CHARGING WITH ELECTRIC VEHICLE SENSORS,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
相关推荐
Electromagnetic compatibility for Electric Vehicle Sensors
In a sense, cars are now mobile computers. In modern automotive design, there is hardly a system that‘s not monitored or optimized by technology – sensors included. There‘s no vehicle type where this is more apparent than in electric cars.
Ev Trends & Sensor Technology: Synchronous Growth
While there’s still some consumer reluctance to accept the latest evolution in transportation, today’s electric vehicle sensors can ensure a car, bus, or even plane ride is a much quieter and higher quality experience than today’s thermal engine technology.
Amphenol Sensors(安费诺)/Thermometrics 温度传感器选型指南
目录- 温度传感器产品介绍及应用领域 NTC热敏电阻/PTC热敏电阻 探针和组件 其他技术和附件
型号- T5D,HM,YA,YB,YC,P60,YD,YF,P65,YG,YH,RL40,YK,YL,YP,YR,EC95,GC32,YS,RL45,GC16,B35,UD20,RL30,3006,AB6,MELF,JA,YS4019,JB,JTC,JC,JD,RL35,JE,JF,MF65,SP85,JS2945,JI,B43,JL,JM,JP,FP10,JR,JTR,CTR100,FP14,P85,JW,M,NDK,T,NDM,CTR65,NDL,ZTP,BB07,PT1000,0706,BB05,NDP,YS4020,NDU,YSM 4021,CL,CTR85,BR16,KU,BR14,KY,BR11,TC,FP07,1403,NHQM,YSM,TH,R100,TM,MA400,PTSM,TP,1803,BB11,EVAP,P100,MA100,DK,SC30,R60,BR23,P20,R65,HVAC,P25,YM120,PT200,EVAPA1450,MS,DKM,MT,CTR60,P30,RL1004,BR32,A1447-A1450,ND,PTA,NK,EVAPA1447,1703,PTE,PTD,SP100,PTF,DC95,PTH,B05,B07,PTO,EVAP A1424,SC50,R85,BR42,C100,2006,JYA,NHQ,NHQMM,GC11,GC14,GE,RL20,M2000,B10,PT100,B14,GT,BR55,MC65,SP60,TK95,SP65,RL14,RL060628,RL10
EV Battery Pack Water Detection Sensor from Amphenol Sensors
With the sharp growth of electric vehicles, many OEMs are using a water cooling system for the EV battery system. When water escapes the system and leaks into the battery pack, dangerous conditions are created. Amphenol Advanced Sensors‘ Water Detection Sensor monitors for water leakage by constantly checking resistance values. If a leak is detected in the EV battery pack, this sensor technology provides immediate notification.
Amphenol Sensors(安费诺)/All Sensors 压力传感器选型指南(简版)
目录- 传感器解决方案及产品优势介绍 传感器技术介绍 单芯片压力传感器 双芯电路交叉耦合补偿压力传感器 双芯电路和气路交叉耦合补偿压力传感器 传感器应用领域介绍 压力单位换算 传感器通用名词解释
型号- DLH,ADCX,ACPC-C,AXCA,ACPC,BLV,DLV,ACPC-H,AXCA-PRIME,AXCA-MIDDLE,MAMP,MLV,SAMP,ACPC-P,BLC,ADUX,BLVR,MAMP-/P,ADCA,DLH,DLVR,DLVR,BLCR,MAMP-P,MDCX,ADO,BLV,AXCX-PRIME-INCH,DLHR,DLHR,AXCX,MLV,AXCA-MIL,BLC,DLC,ADO-MIL
【选型】Amphenol Sensors(安费诺)/SGX Sensortech 红外/半导体/电化学/气体传感器传感器选型指南
目录- 安费诺公司介绍 工业安全气体传感器 环境监测产品 半导体 红外输出产品 催化CH4 红外HC 红外CO2 电化学
型号- MICS-4514,IR12EJ,IR22BD,SGX-4H2S,MICS-2614,VQ546MR,INIR12PR-1.4%,VQ24,VQ25,VQ548ZD,IR12EM,SGX-7H2S,IR21GM,IR34BC,IR11BD,IR21GJ,SGX-40X,SGX-7OX,IR604/1,VQ542R,IR25TT-M,IR11BR,IR604/3,IR604/2,SGX4NH3,SGX-SURECO,VQ21TSB,IR12GJ,SGX-4DT,IR11EJ,IR21BD,MICS-2714,INIR12,VQ41,INIR11,SGX-7NH3,IR12GM,IR11EM,IR15TT,IR14BD,VQ21TB,IR33BC,IR15TT-M,SGX-70X,SGX-4CO,IR603/2,VQ31,VQ548ZD/W,IR603/1,VQ21TS,VQ35,IR15TT-R,IR603/3,V025,IR25TT,IR11GJ,MP7217,IR11GM,MICS-5524,MP7214,MP7217TC,IR81BB,VQ547TS,VQ542ZD,VQ548MP,VQ542RD,4系列,SGX-7CO,IR13BD,IR22EJ,IR32BC,MICS-5914,IR602/3,IR602/2,IR602/1,INIR12PR-1.7%,VQ21T,VQ546M,IR23BD,IR31CE,IR42BC,MICS-OZ-47,VQ2,VQ545ZD,VQ1,VQ549ZD,IR12BD,IR22GJ,IR21EJ,7系列,IR31BC,SGX-4OX,IR601/3,IR601/2,IR601/1,IR31SE,IR31SC,IR21EM,VQ549ZD/W
MMBZ5V6A Zener Diode: Technical Features and Potential Applications in Electric Vehicles
This article will take a closer look at the MMBZ5V6A Zener diode, analyzing its technical features and exploring its potential applications in the electric vehicle (EV) sector.
Amphenol Sensors(安费诺)建筑及工业应用传感器选型指南
目录- Chip Cap 2完全校准的温湿度传感器 Telaire Ventostat®T8700壁挂式温湿度变送器 Telaire Ventostat®T8031 CO2小型风管式C02传感器 Telaire®T8041/T8042 分管式C02传感器 Telaire T8100-R系列挂壁式C02和温度变送器(带继电器) Telaire®7000室内空气品质监测器 Telaire VaporstatTM 9002红外露点变送器 Telaire®配件 Telaire HumiTrac™温湿度变送器 T9602湿度与温度传感器 AAS-53系列水管型温度变送器 ADT/AOT/AIT温湿度变送器使用说明书
型号- P40250128,CC2D265,P40250129,P40250126,P40250127,P40250125,P40250122,P40250123,DC95F302W,P40250120,P40250121,T8031,CC2D255,EHR-4,T8100-D-R,P40250139,K53,T8700,CC2A23,PT1000A,AIT,PT1000B,CC2A25,P40250133,P40250131,T2075NG,P40250130,T804K0-10V,T1508,T8200-D-5P,T8042-5VI0-5V,T9602-5-A-1,NI1000,9002,T9602-3-A-1,T5100,P40250149,CC2A35,T8700-E-D,P40250147,0-5000PPM,P40250144,PT100A,T7001I,P40250145,PT100B,P40250142,P40250143,T8100,S4B-EH,CC2A33,P40250141,CC2D235,CC2D355,T7001,PT1000,T2072,T7001D,CC2D25,T9602-3-A,T8042I0-10V,CC2D23,P40250156,T8041,T8100-R,P40250151,T8042,P40250150,T9602-3-D,NTC10K,CC2025,7000,T9602-3-D-1,CC2D35,T9602,CC2D33,ADT,NTC15K,T8200,CC2D335,CHIPCAP 2,NTC10K-II,T2090,T1551,T1552,MPNT3D03750M4,NTC20K,T2007,T8700-D,T8700-E,T8100,T2080,T8100-EC,P40250109,PA0250118,T8100-E-D-GN-5P-R,PA0250115,T1505,P40254275,P40254276,P40254277,P40250189,P40250186,P40250184,P40250185,T8300,P40250182,P40250183,P40250181,AAS-53,8000,PT100,T7001SK,P40250119,NTC10K-A,AOT,P40250117,T9602-5-A,P40250113,P40250114,P40250111,P40250112,DC95F103W,T2076NG,P40250110,P40250193,T9602-5-D,T8001,P40250191,7001D,P40250192,T8002,T9602-5-D-1,MPNV12R30M 16004616,B4B-EH-A,P40250190,T8041-5VI0-5V,RS485,NTC10K-III
Amphenol Sensors(安费诺) 汽车传感器选型指南
目录- 汽车传感器解决方案介绍 车厢空气质量系列传感器 排放处理系列传感器 新能源汽车传感器应用 测量汽车应用中最为关键的参数
型号- SM-UART-01L,PT200,T6703,TPMS,DPS,G-CAP2,SM-UART-01D,A2103,NPI-19,T6713,A-2102,EGR,A-2103,NPP-301,GE-1935,A-2121,ZTP,DPF,SM-UART-01L+,SM-PWM-01C,NPX1
Looking Closer at DC Link Capacitors in Electric Vehicles
In electric vehicle (EV) applications, DC link capacitors help offset the effects of inductance in inverters, motor controllers, and battery systems. They also serve as filters that protect EV subsystems from voltage spikes, surges, and electromagnetic interference (EMI).
AMPHENOL SENSORS(安费诺)温度传感器选型表
AMPHENOL SENSORS(安费诺)温度传感器选型表。25°C 时阻值:5Ω~1.3MΩ,B25/85:2983K~4793K。
产品型号
|
品类
|
25°C 时阻值(Ω)
|
电阻容差
|
B25/85
|
工作温度(℃)
|
长度-引线(inch、mm)
|
安装类型
|
封装/外壳
|
AL03006-5818-97-G1
|
温度传感器
|
10k
|
±10%
|
3992K
|
-50°C ~ 204°C
|
1.15"(29.20mm)
|
通孔
|
DO-204AH,DO-35,轴向
|
选型表 - AMPHENOL SENSORS 立即选型
Amphenol Sensors(安费诺) 医疗传感器选型指南
目录- NPA贴片式压力传感器系列 NTC AB6 型 "SC/MC"系列专为医疗设汁 MA100系列 ZTP-148SR系列 ZTP-101T系列 NPC-100系列一次性医疗压力传感器 NPC-1210系列 NPG-1220系列中压传感器 NPI-12卫生型压力传感器、不锈钢介质隔离压力传感器 NPI-15系列电流激励高压、介质隔离压力传感器 NPI-15VC系列电压激励、高压、介质隔离压力传感器 NPI-19系列电流激励、中压、介质隔离压力传感器 NPI-19系列电压激励、中压、介质隔离压力传感器 NPP-301系列贴片封装压力传感器
型号- NPP-301B-700AT,NPC-1001000,NPI-12-101G,MC65F103C,NPP-301A-100AT,NPI-19X-YYYZZ,NPI-15X-YYYZZ,NPI-19J-XXX,B35,ZTP-148SR,NPI-19A-XXX,MC65F103A,NPP-301A-200A,MC65F103B,AB6,NPA-300,NPI-19H-XXX,NPA-700,AB6E8,B43,NPP-301B-200A,NPI-12,NPI-19X-XXXXV,NPI-15,SC30F103W,NPP系列,NPP-301B-200AT,SC30F103V,MA100BF103C,NPI-19,SC30F103A,SC,MA100BF103B,MA100BF103A,NPI-15B-XXX,MA100GG232C,NPI-15C-C00903,NNP301B,NNP301A,MA100GG103CN,NPP-301B-700A,BR16,BR14,BR11,NPC-1210XXXX-YZ,ZTP-101T,NPC-100T,MA100GG103BN,MA100,NPP-301A-100A,NPC-100,NPI-19A-C01864,BR23,P20,P25,AB6B4,MC65F232A,MC,AB6B2,MC系列,NPI-19A-002GV,MA100GG103AN,AB6A8-BR16KA103N,NPI-15VC,NPP-301A-200AT,P30,BR32,NPA-100,NPC-1220XXXX-YZ,NPA-500,SC50F103W,NPP-301B-100A,NPA,NPP-301B-100AT,MC65F502B,NPI-15A-XXX,B05,B07,SC30Y103W,NPI-15J-XXX,NPP,NPP-301A-700A,BR42,NPP-301,MA100GG103B,NPI-19B-XXX,NPI-12-101GH,MA100GG103A,MC65G503B,MA100GG103C,NPC-1220,NPP-301A-700AT,B10,NPI-15H-XXX,B14,NPI-15XXXXXX,NTC AB6,BR55,NPC-1210,SC系列
Exploring the Capacitor Technologies Needed in Electric Vehicles
The electrical power systems in most modern technologies, like electric vehicles (EVs), are complex. In EVs specifically, power systems are responsible for performing many tasks such as converting AC to DC and DC to AC as well as managing changing power levels in DC/DC conversion. When performing these tasks, manipulating AC voltages and removing noise from DC voltage requires passive components such as capacitors, to perform many “jobs” inside the power system.
Amphenol Sensors(安费诺)/Nova Sensor 压力传感器及敏感元件选型指南
目录- P1300低压硅压力传感器芯片 P1302低压硅压力传感器芯片 P111中压硅压力传感器芯片 P883(5~15000 PSI)硅压力传感器芯片 P1602硅压力传感器芯片 P122 高压硅压力传感器芯片 NPC-100系列一次性医疗压力传感器 NPC-1210系列低压系列固态压力传感器 NPC-1220系列中压传感器 NPH系列固态压力传感器(中低压) NPI-12卫生型压力传感器、不锈钢介质隔离压力传感器 NPI-15VC系列电压激励、高压、介质隔离压力传感器 NPI-15系列电流激励高压、介质隔离压力传感器 NPI-19系列电压激励、中压、介质隔离压力传感器 NPI-19系列电流激励、中压、介质隔离压力传感器 NPI-19低压不锈钢介质隔离压力传感器 NPP-301系列贴片封装压力传感器 NPA贴片式压力传感器 NPR-101系列复杂介质压力传感器 Modus T系列微差压力传感器 压力变送器IPT1000/2000系列
型号- NPP-301B-700AT,IPT1000,51243,51245,51003,51244,NPP-301A-100AT,51005,51367,51004,51007,51006,51009,NPI-19X-YYYZZ,51008,51407,51406,NPI-15X-YYYZZ,51409,51408,NPP-301A-200A,NPH-XYYY-ZZ,51010,51012,51254,51011,51253,51013,NPA-300,NPR-101,51137,NPA-700,NPH系列,NPP-301B-200A,NPI-12,NPI-19X-XXXXV,P1602,NPI-15,NPP-301B-200AT,NPI-19,NPA100,NPI-15X-XXXXX,51142,MODUS T,51421,NPI-15X-XXXXXX,51304,51303,NPI-15C-C00903,NPP-301B-700A,51391,NPC-1210XXXX-YZ,51151,51393,51392,51395,NPI-19A-031GH,T10,51394,51031,51397,51399,51313,51433,51314,NPC-100T,51317,51318,NPP-301A-100A,P1302,NPC-100,P1300,51041,51283,NPI-19A-021GH,51282,T20,51045,51322,51046,51445,51324,51444,51323,51326,51325,51328,51327,51329,NPI-19A-002GV,NPI-15VC,NPP-301A-200AT,IPT2000,T30,NPC-1220XXXX-YZ,51298,51331,NPA-500,51330,51333,51299,51332,51335,51334,NPI-19X-XXXXXV,51337,51336,51339,51338,NPP-301B-100A,NPP-301B-100AT,NPA,T系列,P122,P883,NPH,NPI-19A-C01841,NPI-19A-C01840,NPP-301A-700A,T40,51340,NPP-301,51342,51187,51341,NPI-12-101GH,NPI-1,NPC-1220,NPP-301A-700AT,P111,51076,NPC-1210,51114
电子商城
品牌:AMPHENOL SENSORS
品类:Assembly NTC temperature sensor
价格:¥5.0624
现货: 2,000
品牌:AMPHENOL SENSORS
品类:Surface Mount Pressure Sensors
价格:¥97.5000
现货: 51
品牌:AMPHENOL SENSORS
品类:Air Quality Sensors IR LED Dust Sensor
价格:¥40.5000
现货: 35
品牌:AMPHENOL SENSORS
品类:Board Mount Pressure Sensors
价格:¥253.8839
现货: 30
品牌:AMPHENOL SENSORS
品类:Low Pressure Compact Sensors
价格:¥125.9778
现货: 25
品牌:AMPHENOL SENSORS
品类:Board Mount Pressure Sensors
价格:¥253.8839
现货: 25
品牌:AMPHENOL SENSORS
品类:Board Mount Pressure Sensors
价格:¥227.5314
现货: 25
品牌:AMPHENOL SENSORS
品类:Board Mount Pressure Sensors
价格:¥227.5314
现货: 25
现货市场
服务
可定制板装式压力传感器支持产品量程从5inch水柱到100 psi气压;数字输出压力传感器压力范围0.5~60inH2O,温度补偿范围-20~85ºС;模拟和数字低压传感器可以直接与微控制器通信,具备多种小型SIP和DIP封装可选择。
提交需求>
可定制温度范围-230℃~1150℃、精度可达±0.1°C;支持NTC传感器、PTC传感器、数字式温度传感器、热电堆温度传感器的额定量程和输出/外形尺寸/工作温度范围等参数定制。
提交需求>
登录 | 立即注册
提交评论