ROGERS Provides Various of Circuit Laminates in Reliable PTFE, Creating Possibilities for Improved Performance
Electronic devices are necessities for many, performing a multitude of daily functions including communicating, remembering appointments, and tracking finances. The printed circuit boards (PCBs) that support those devices must channel a variety of signals which continue to move higher in the electromagnetic (EM) spectrum as bandwidth is occupied. Circuit materials for those PCBs evolve with the demands of electronic applications, enabling circuits at higher frequencies as new combinations of materials are explored and applied. Composite materials for circuit materials are carefully researched for electrical and mechanical behavior under many different environmental conditions and knowing how the different ingredients of a circuit material work together can often ease the task of finding the best circuit material for a particular application.
Polytetrafluoroethylene (PTFE) is one of those essential ingredients for many high frequency PCBs. It is a thermoplastic fluoropolymer formed of carbon and fluorine, with high molecular weight and low coefficient of friction. It has excellent dielectric properties at microwave through millimeter-wave frequencies and has been a reliable foundation for high frequency circuits on land, sea, and in air. But it does not work alone and functions best when combined with other key material components to form composite materials with the electrical and mechanical properties needed for applications. Those different combinations yield circuit materials that can best serve different segments of the frequency spectrum as it continues to be filled by radio waves of all shapes and sizes.
PTFE exhibits dielectric properties superior to many materials, with high dielectric strength and low dielectric constant (Dk). Solid PTFE has a Dk of about 2.0 and extremely low loss tangent or dissipation factor (Df) of approximately 0.0003. It is mechanically sound and chemically inert, with a high coefficient of thermal expansion (CTE). But for all these positive qualities, PTFE is only one material component in a successful high frequency circuit material. It is typically reinforced with woven-glass or ceramic materials to increase the mechanical stability and enhance the thermal behavior of PTFE. When used for PCBs, it is desirable to match the CTE of the dielectric PTFE material to the copper conductors, so that both portions of the PCB expand and contract in the same manner.
By combining PTFE with different material additives, ROGERS has provided the benefits of PTFE to circuit designers, electronic manufacturers, and electronic end-users while also delivering the highest performance and reliability for each composite combination. Whether combining PTFE with glass materials, ceramics, or other fillers, the circuit materials offer a wide choice of electrical and mechanical characteristics to meet the ongoing evolution of electronics technology throughout the frequency spectrum, well into the millimeter-wave frequency range past 110 GHz.
For Rogers’ circuit materials, no matter the composition, circuit designers and fabricators can count on the accuracy and precision of key parameters such as Dk. By adhering to proven industry test methods such as IPC-TM-650 2.5.5.5c, which characterizes the Dk through the thickness (or z-axis) of the material at 10 GHz, users of the materials are assured of Dk and other parameter values that accurately represent the products. Tolerance values are offered for some material parameters, such as Dk, to provide an indication of consistency. In addition, “design Dk” values are available of all circuit materials, allowing circuit designers to account for any variations in material behavior resulting from circuit fabrication processes when using a commercial circuit design software program with circuit material input parameters.
Defining Differences
circuit laminates are compilations of material components, including a foundation such as PTFE. Additives help fine-tune the electrical and mechanical behaviors of the resulting composite material so that critical parameters, such as Dk, can be adjusted according to the needs of circuit designers, fabricators, and applications. For example, in the Rogers RO3000® Series material line, the initial low Dk of PTFE is raised through the addition of ceramic materials, at times with woven-glass reinforcement. While the additives result in a line of circuit materials with a wide choice of Dk values, from as low as 3 to just above 10, those values are all tightly controlled through each circuit panel. The benefits of PTFE are enhanced through these added materials in terms of electrical consistency and mechanical strength, and the tight tolerances of the Dk values are quite impressive.
The lowest Dk value, for example, belongs to Rogers RO3003™ with a process Dk value of 3.00 through the z-axis of the material measured at 10 GHz. The Dk tolerance across the material is remarkable, at a miniscule ±0.04, denoting the impressive control in manufacturing this material from PTFE and other material components. In the case of RO3003, the major added material is ceramic, which accounts for the slight increase in Dk above the nominal Dk of PTFE. For even greater mechanical strength, along with the ceramic material, glass reinforcement is added to Rogers RO3203™ laminate with only a minor increase in process Dk of 3.02 at 10 GHz while maintaining the same tight Dk tolerance of ±0.04.
Higher Dk values enable greater miniaturization of circuit features for a given signal frequency and members of the RO3000 laminate line provide Dk values as high as 10 by supporting PTFE with different blends of ceramic and woven glass reinforcement. RO3035™ laminates, for instance, by adding ceramic material to the PTFE, raise the Dk to 3.50 while keeping a Dk tolerance of ±0.05. By adding a greater amount of ceramic or different types of ceramic to the PTFE, RO3006™ laminates increase the process Dk value to 6.15 while holding the Dk tolerance to ±0.15. The laminate is also available with the mechanical strength of woven glass reinforcement and the same Dk value and Dk tolerance, as RO3206™ laminates. RO3010™ laminates increases the ceramic portion of the PTFE composite to achieve a process Dk of 10.20 with Dk tolerance of ±0.30. It is also available with woven glass reinforcement and the same process Dk of 10.20 but only slightly worse Dk tolerance of ±0.50, as RO3210™ laminate. Tight control of the material amounts in each composite case accounts for the Dk tolerances that are consistently tight even as the Dk value increases. In each case, the quality of the individual materials, including the base PTFE material, is critical for achieving composite Dk values held within such tight windows.
For those who prefer a Dk value as close as possible to the base PTFE value of about 2, Rogers RT/duroid® 5000 RF circuit materials include RT/duroid® 5870 laminate with a process Dk value of 2.33 and RT/duroid® 5880 laminate with a process Dk of 2.20; the Dk values for both materials are maintained across the material with a stunningly tight tolerance of ±0.02. These PTFE-based circuit laminates feature composites with different amounts of random glass fiber to achieve the different Dk values.
As these circuit material examples show, a laminate’s composition contributes a great deal to its performance, but it can also influence the way the circuit material is processed when manufacturing PCBs. While RT/duroid 5870 and 5880 laminates may offer Dk values close to that of PTFE, and outstanding performance at the highest frequencies, they are not overly friendly to circuit fabrication processes, especially when using the processing of low-cost FR-4 circuit materials as a reference. With their composite blends, PTFE-based RO3000 circuit materials, on the other hand, are more compatible with higher-volume circuit fabrication processes.
Of course, PTFE is only one of several base materials forming modern circuit material composite formulations for high frequency circuit laminates. Thermoset materials such as polyphenyl ether (PPE) and polyphenylene oxide (PPO) are also commonly used, along with epoxy resin and hydrocarbon-based materials with ceramic fillers. One of the earliest high frequency thermoset circuit materials, RO4003C™ laminate from Rogers, is a hydrocarbon-based material friendly to high-volume circuit fabrication processes. It features a nominal Dk value of 3.38 with Dk tolerance of ±0.05. With its good plated-thru-hole reliability, the material has proven to be well suited for producing high-layer-count PCBs via FR-4-like processing.
RO4003C laminate is one member of the RO4000® Series line of hydrocarbon-based circuit materials with ceramic and woven glass fillers available with Dk values from 3.25 to 6.15. The lowest Dk value belongs to RO4830™ circuit laminates which are formulated with spread woven glass in addition to hydrocarbon and ceramic materials. For a slightly higher Dk of 3.48, RO4350B™ laminates employ woven glass and ceramic fillers. Both Dk values are maintained within ±0.05 Dk tolerance. At twice the Dk value, at 6.15, RO4360G2™ laminates blend hydrocarbon, ceramic, and woven glass materials into a combination that maintains a Dk tolerance of ±0.15. These thermoset materials are extremely reliable in high-temperature environments and offer FR-4-like ease of high-volume PCB processing, especially for multilayer circuits.
Demand continues to grow for high-performance, high frequency circuit materials as use of the frequency spectrum is expanded well into the millimeter-wave range with such applications as automotive safety systems, 5G communications networks and, before long, 6G networks combining terrestrial and satellite links. The circuit examples presented here demonstrate how compilations of materials can make differences in material behavior, ease of processing, performance, and reliability. New materials and mixtures always create possibilities for improved performance, cost, and reliability as shown by these few examples, Rogers is constantly in quest of material combinations that can lead to a better electronic future.
- |
- +1 赞 0
- 收藏
- 评论 0
本文由翊翊所思转载自Rogers News,原文标题为:Finding the Formula for Low-Loss RF Microwave Laminates,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
相关推荐
Rogers‘ Advanced Laminates Power The Mars Exploration of NASA
NASA announced yet another historic moment on Mars: the landing of their most advanced explorer yet, the Perseverance Rover. High-frequency specialty laminates enable radars and antennas on these types of rovers and the vehicles that get them there. The advanced circuit materials of ROGERS have been in nearly every US space mission,such as Rogers RT/duroid® high frequency circuit materials are filled PTFE (random glass or ceramic) composite laminates for use in high reliability, aerospace and defense applications.
ROGERS将PTFE与玻璃材料、陶瓷或其他填料相结合,为层压板提供广泛的电气和机械特性选择
对于罗杰斯(ROGERS)的电路材料,无论成分如何,电路设计师和制造人员都可依靠 Dk 等关键参数的准确性和精确度。遵循久经考验的行业测试方法(如 IPC-TM-650 2.5.5.5c),通过材料在 10 GHz 时的厚度(或 z 轴)来表征 Dk,确保使用材料的用户能够获得准确表示产品的 Dk 和其他参数值。为 Dk 等一些材料参数提供公差值,从而提供一致性指示。
罗杰斯RO3003™多层PCB板的电路板材料在毫米波频率下实现低损耗电路特性
随着毫米波带宽的日益普及,包含毫米波电路的多层PCB也将越来越普遍,层数越来越多,尺寸越来越小。 选择正确的电路板材料和预浸料,一切都会更紧密地结合在一起。
ROGERS层压板/高频板选型表
罗杰斯/ROGERS提供以下技术参数的层压板/高频板选型,超低损耗,低至0.0004(Df) ;超大尺寸:54inchX24inch、52inchX40inch、50.1inchX110inch 等;丰富介电常数:2 -12.85 (Dk);超薄介质,低至1mil
产品型号
|
品类
|
产品系列
|
介电常数(Dk)
|
正切角损耗(Df)
|
介质厚度(mm)(mil)
|
导热系数W/(m·K)
|
铜箔类型
|
铜箔1厚度
|
铜箔2厚度
|
尺寸(inch)
|
5880LZNS 24X18 H1/H1 R4 0100+-001/DI
|
层压板
|
RT/duroid® 5880LZ
|
2
|
0.0027
|
0.254mm(10mil)
|
0.33
|
电解铜
|
H1
|
H1
|
24X18
|
选型表 - ROGERS 立即选型
Rogers苏州工厂生产的产品的临时交货期延长
描述- Rogers公司宣布,由于近期需求激增,其苏州工厂生产的多个产品将临时延长交货期。预计这种影响将是短期性的,并计划从2024年5月初开始逐步减少交货期。具体产品及其新的交货期已附在邮件中。公司正在评估现有订单的恢复日期,并请求客户提供预测信息以协助决策。
型号- RO4830™,RO4535™,KAPPA® 438,DICLAD880™,RO4533™,RO4000™,DICLAD®,RO3003G2™,RO3035™,RO3003™,RO4003C™,RO4835™,RO3003G2™ PM,TC350™,RO4534™,RO4730G3™ R2,RO4835T™,RO4233™,RO4350B™,RO3006™,AD255™,AD300™,RO3010™,RO3000™,TC350™ PLUS
产品变更通知:比利时生产的RO3000®和RO4000®层压板的供应地点变更
描述- Rogers Corporation将于2025年中止其在比利时Evergem工厂的RO3000®和RO4000®层压板生产。比利时工厂的客户需求将转移至中国苏州和美国 Chandler 的制造工厂。资料提供了产品过渡计划、关键日期、产品数据比较、汽车修订标识等信息,并鼓励客户与Rogers合作确保平稳过渡。
型号- RO3003G2™,RO3006™,RO4000®,RO3035™,RO3003™,RO4350B™,RO3000®,RO4003C™,RO3010™,RO4835™
Rogers Corporation主动承担降低RO3000®产品线供应链的风险
描述- Rogers Corporation为提高RO3000®产品线的供应链韧性,与多个PTFE树脂供应商合作,确保材料供应的持续可靠性。由于供应商退出,部分产品将更换PTFE供应商。从2023年9月开始,RO3000®层压板客户将逐步过渡到RO3010™,预计2024年第一季度末完成。Rogers已对新产品进行测试,并与现有产品进行对比,分析表明两者性能无显著差异。
型号- RO3006™,RO3003G2™,RO3210™,RO3206™,RO3035™,RO3003™,RO3000®,RO3203™,RO3010™
Rogers Corporation RO3000®PTFE分散体供应商变更RO3010™数据比较更新
描述- 罗杰斯公司发布告知函,宣布RO3000® PTFE 乳液供应商变更,并更新了RO3010™产品的技术参数对比数据。新供应商的PTFE树脂与现有产品在电气和机械性能上无显著差异。公司提供免费样品供用户自行评估,并建议用户根据具体应用确定产品适用性。
型号- RO3006™,RO3210™,RO3206™,RO3035™,RO3003™,RO3000®,RO3203™,RO3010™
Rogers Corporation RO3000®PTFE分散体供应商变更RO3206™数据比较更新
型号- RO3006™,RO3210™,RO3206™,RO3035™,RO3003™,RO3000®,RO3203™,RO3010™
聚四氟乙烯/玻璃纤维编织层压板微波印制电路板基板
描述- CuClad系列PTFE/编织玻璃层压板是用于微波印刷电路板基材的复合材料。该系列产品具有交叉编织玻璃纤维、高PTFE与玻璃比、优异的介电常数均匀性等特点。CuClad层压板提供多种选择,从最低的介电常数和损耗角正切到具有更好尺寸稳定性的高强度层压板。这些特性使其成为滤波器、耦合器和低噪声放大器的理想选择。产品包括CuClad 217、CuClad 233和CuClad 250,分别适用于不同的应用需求。
型号- CUCLAD
Rogers Corporation RO3000®PTFE分散体供应商变更RO3003™更新数据比较
描述- 罗杰斯公司发布通知,关于RO3000® PTFE乳液供应商变更,并提供了RO3003™产品技术参数对比数据。新供应商的PTFE乳液在电气和机械性能上与原有供应商的产品无显著差异。公司提供免费样品供用户评估,并鼓励用户根据具体应用确定产品适用性。
型号- RO3006™,RO3210™,RO3206™,RO3035™,RO3003™,RO3000®,RO3203™,RO3010™
微波毫米波射频板板材及技术应用优势
微波毫米波射频板对板材有特殊的要求,主要包括低介电常数、低介质损耗、良好的热导率、优异的尺寸稳定性和加工性能等。罗杰斯(Rogers)和泰康利(Taconic)是两个知名的高频板材供应商,它们生产的板材广泛应用于微波和毫米波射频板中。F4B板材也是一种用于射频应用的板材。本文鑫成尔电子解析了微波毫米波射频板板材及技术应用优势。
【经验】RT/Duroid®5880和RO3003™层压板的TCDk测试,分析理解温度变化对毫米波电路的RF性能影响
温度的变化会导致高频电路性能的变化。不管这些温度变化是来自电路本身的内部散热,或者是安装在电路上的设备,又或者是来自于外界环境,它们可能会对电路的性能产生影响。本文通过ROGERS RT/Duroid®5880和RO3003™层压板的TCDk测试,分析理解温度变化对毫米波电路的RF性能影响。
Rogers(罗杰斯)RO3003G2™高频层压板数据手册
描述- RO3003G2™ high-frequency ceramic-filled PTFE laminates are an extension of Rogers’ industry leading RO3003™ solutions.
型号- RO3003G2™,RO3003™,RO3003G2,RO3000®
AD Series™高频层压板带状线和多层电路制造注意事项
型号- AD SERIES™,AD250C™,AD300C,AD320A,AD255C,AD255C™,AD350A,AD250C,AD350A™,AD SERIES,AD260,AD300D™
电子商城
品牌:ROGERS
品类:Circuit Materials
价格:¥2,479.9453
现货: 1,289
品牌:ROGERS
品类:High Frequency Circuit Materials
价格:¥550.8681
现货: 1,135
品牌:ROGERS
品类:High Frequency Laminates
价格:¥748.2760
现货: 110
品牌:ROGERS
品类:High Frequency Laminates
价格:¥6,066.0910
现货: 50
品牌:ROGERS
品类:High Frequency Laminates
价格:¥2,225.7392
现货: 30
品牌:ROGERS
品类:Circuit Materials
价格:¥4,163.3134
现货: 11
品牌:ROGERS
品类:Circuit Materials
价格:¥43,878.7628
现货: 10
品牌:ROGERS
品类:High Frequency Laminates
价格:¥6,277.6203
现货: 7
品牌:ROGERS
品类:High Frequency Circuit Laminates
价格:¥8,575.9350
现货: 5
品牌:ROGERS
品类:High Frequency Circuit Laminates
价格:¥2,978.0181
现货: 5
登录 | 立即注册
提交评论