【技术】MOSFET规格书参数详解
极限参数HI-SEMICON
极限参数也叫绝对最大额定参数,MOS管在使用过程当中,任何情况下都不能超过下图的这些极限参数,否则MOS管有可能损坏。
VDS 表示漏极与源极之间所能施加的最大电压值。
VGS 表示栅极与源极之间所能施加的最大电压值。
ID 表示漏极可承受的持续电流值,如果流过的电流超过该值,会引起击穿的风险。
IDM 表示的是漏源之间可承受的单次脉冲电流强度,如果超过该值,会引起击穿的风险。
EAS 表示单脉冲雪崩击穿能量,如果电压过冲值(通常由于漏电流和杂散电感造成)未超过击穿电压,则器件不会发生雪崩击穿,因此也就不需要消散雪崩击穿的能力。EAS标定了器件可以安全吸收反向雪崩击穿能量的高低。
PD 表示最大耗散功率,是指MOS性能不变坏时所允许的最大漏源耗散功率,使用时要注意MOS的实际功耗应小于此参数并留有一定余量,此参数一般会随结温的上升而有所减额。(此参数靠不住)
TJ, Tstg ,这两个参数标定了器件工作和存储环境所允许的结温区间,应避免超过这个温度,并留有一定余量,如果确保器件工作在这个温度区间内,将极大地延长其工作寿命。
dV/dt 反映的是器件承受电压变化速率的能力,越大越好。对系统来说,过高的dv/dt必然会带来高的电压尖峰,较差的EMI特性,不过该变化速率通过系统电路可以进行修正。
热阻
热阻表示热传导的难易程度,热阻分为沟道-环境之间的热阻、沟道-封装之间的热阻,热阻越小,表示散热性能越好。
备注:元器件降额分析,计算MOS温升时,需要用到此参数。
技术参数
△VDS/TJ 表示的是漏源击穿电压的温度系数,正温度系数,其值越小,表明稳定性越好。
VGS(th) 表示的是MOS的开启电压(阈值电压),对于NMOS,当外加栅极控制电压 VGS超过 VGS(th) 时,NMOS就会导通。
IGSS 表示栅极驱动漏电流,越小越好,对系统效率有较小程度的影响。
IDSS 表示漏源漏电流,栅极电压 VGS=0 、 VDS 为一定值时的漏源漏流,一般在微安级。
RDS(ON) 表示MOS的导通电阻,一般来说导通电阻越小越好,其决定MOS的导通损耗,导通电阻越大损耗越大,MOS温升也越高,在大功率电源中,导通损耗会占MOS整个损耗中较大的比例。
gfs 表示正向跨导,反映的是栅极电压对漏源电流控制的能力,gfs过小会导致MOSFET关断速度降低,关断能力减弱,过大会导致关断过快,EMI特性差,同时伴随关断时漏源会产生更大的关断电压尖峰。
☀动态参数
Ciss 表示输入电容,Ciss=Cgs+Cgd,该参数会影响MOS的开关时间,该值越大,同样驱动能力下,开通及关断时间就越慢,开关损耗也就越大。
Coss 表示输出电容,Coss=Cds+Cgd;Crss表示反向传输电容,Crss=Cgd(米勒电容)。这两项参数对MOSFET关断时间略有影响,其中Cgd会影响到漏极有异常高电压时,传输到MOSFET栅极电压能量的大小,会对雷击测试项目有一定影响。
Qg、Qgs、Qgd、td(on)、tr、td(off)、tf 这些参数都是与时间相互关联的参数。开关速度越快对应的优点是开关损耗越小,效率高,温升低,对应的缺点是EMI特性差,MOSFET关断尖峰过高。
☀漏源体二极管特性
IS、ISM这些参数如果过小,会有电流击穿风险。
VSD、trr 如果过大,在桥式或LCC系统中会导致系统损耗过大,温升过高。
Qrr 该参数与充电时间成正比,一般越小越好。
特性曲线
☀输出特性曲线
输出特性曲线是用来描述MOS管电流和电压之间关系的曲线,特性曲线会受结温的影响,一般数据手册上会列出两种温度下的特性曲线。
*转移特性曲线
根据MOS管的输出特性曲线,取Uds其中的一点,然后用作图的方法,可取得到相应的转移特性曲线。从转移特性曲线上可以看出当Uds为某值时,ld与Ugs之间的关系。
☀导通电阻随温度变化的曲线
MOS的导通电阻跟结温是呈现正温度系数变化的,也就是结温越高,导通电阻越大。MOS数据手册上一般会画出当VGS=10V时的导通电阻随温度变化的曲线。
☀电容与源漏极电压曲线
电容容量值越小,栅极总充电电量QG越小,开关速度越快,开关损耗就越小,开关电源DC/DC变换器等应用,要求较小的QG值。
☀正向导通电压曲线(指的是寄生二极管导通,而不是DS压降)
MOS管一般会有一个寄生二极管,寄生二极管对MOS管有保护的作用,它的特性跟普通的二极管是一样的,也具有正向导通的特性。
☀最大安全工作区
最大安全工作区是由一系列(电压,电流)坐标点形成的一个二维区域,MOS管工作时的电压和电流都不能超过该区域,如果超过这个区域就存在危险。
- |
- +1 赞 0
- 收藏
- 评论 0
本文由FY转载自HI-SEMICON公众号,原文标题为:MOSFET规格书参数详解,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
相关推荐
SiC-MOSFET和Si-MOSFET、IGBT的区别
功率转换电路中的晶体管的作用非常重要,为进一步实现低损耗与应用尺寸小型化,一直在进行各种改良。SiC功率元器件半导体的优势如:低损耗、高速开关、高温工作等,显而易见这些优势是非常有用的。本文介绍SiC-MOSFET和Si-MOSFET、IGBT的的区别。
【技术】解析SiC MOSFET结构及特性
本文中HI-SEMICON将为大家解析SiC MOSFET结构及特性。
【经验】超级结MOSFET在电源上的应用优点及问题
COOLMOS的前世今生COOLMOS也就是super junction MOS由于大家习惯沿用了英飞凌的叫法,所以一直叫COOLMOS,也叫超结MOS。COLLMOS在电源上应用的优点有通态阻抗小,通态损耗小、同等功率规格下封装小,有利于功率密度的提高、棚电荷小,对电路的驱动能力要求降低、节电容小,开关速度加快,开关损耗小。
HI-SEMICON MOSFET用于提高PC电源效率,更快开关速度、更低导通损耗、极低栅极电荷
HI-SEMICON MOSFET在PC电源市场应用,具备更快的开关速度,更低的导通损耗,还拥有极低的栅极电荷(Qg)。意味着公司的产品能在保障稳定性能的同时,显著降低器件的功率损耗,从而提高整个系统的效率。
HI-SEMICON(深鸿盛)场效应管(MOSFET)选型表
目录- 中低压功率MOSFETs 高压功率MOSFETs 超结MOSFETs
型号- SFU6007T,SFP20N65,SCF60R190C,SFD3006T,SFD6003T,SGP104R5T,SFF10N65R,SFD7N70,SFF4N60E,SFQ0320T4,SFM4009T,SFE6001T2,SFP20N60,SFK2N50,SFF60N06,SFM041R8T,SFD60N06,SFD2N50,SFP4N65,SFP33N10,SFP4N65E,SCP60R190C,SFP20N70,SFS3401,SFD4N60E,SFS3400,SFD6005T,SFD7N65E-Y,SFD7N50,SFM6005ST,SFF18N50,SCA60R280C,SFM4N65,SFD1N65,SCP70R360C6,SFD3015T,SGA855R0T,SFP50N06,SCA65R540T,SCF65R640C,SFQ0322T4,SFU4N65E,SFF12N65,SFD6006T,SFD6N70,SGM10HR14T,SFQ0420T4,SGM062R3T,SFS4525T,SFD3N50-P,SFN3009T,SCD60R360C,SFF6N70,SFU3006T,SCF65R1K15C,SFP9N20,SFF50N06,SFD6007T,SFF3N50-P,SFP10N60,SCF65R380C,SFP7N65E-Y,SCP65R380C,SCP60R280C,SFS4008T2,SFS2300,SFF7N65-Y,SCF60R280C,SFF13N50,SFF7N50,SCF65R540T,SFD50N06,SFP10N70,SCD65R1K2C,SFM4010T,SFD3N50TS,SFF6007T,SCF80R500C,SCD80R500C,SFF2N50,SFD3012T,SFA3018T,SFF7N65,SCF65R310C,SFF7N65E-Y,SCD70R360C6,SFF6006T,SCK65R1K15C,SFD4N65E,SFF15N10,SFU4N65,SFF7N70,SFD4003T,SFU9N65,SFF6005T,SFD7N65-Y,SCP60R160C,SCA60R190C,SCF80R950C,SFK3N50,SCF55R2K7C,SFF12N65-Y,SFE3007T,SFP3006T,SFD5N50,SGM6005DT,SFF9N20,SGF15N10,SFP60N06,SFS2N10,SCF70R600C6,SFD4001PT5,SFP10N65-Y,SFF3N50,SFM4N65E,SCD65R125C,SCF65R125C,SFD4N70,SFP7N65-Y,SFF5N50TS,SFP6005T,SCP65R125C,SGM031R1T,SCF70R420C,SCD70R420C,SFP12N65-Y,SCP65R540T,SCF60R160C,SFD4N65,SFS2N7002,SFF3N50TS,SFF33N10,SCF70R360C6,SFS2302B,SFS2301B,SFD15N10,SFF20N60,SFD6003PT,SGA104R5T,SFF20N65,SFS4606T,SFU4003T,SGD15N10,SFF9N50,SFD10N65-J,SFF4N65E,SFD4004PT,SFD9N65,SFF20N70,SFU10N65R,SCD55R2K7C,SFU6003T,SFF10N70,SCF60R360C,SFD2006T,SFF9N65,SFP13N50,SCD70R600C6,SFU7N70,SCD65R380C,SFD5N50TS,SFAP4580,SFF10N60,SCD65R540T,SCP60R360C,SFF4N65,SFM0320T4,SCF65R1K2C,SCP80R500C,SGP855R0T,SFU6005T,SFD10N65R,SFD3N50,SFP12N65,SFU6N70,SFU4N60E,SFF4N70,SFF10N65-Y,SFF9N90,SGU15N10,SFM3011T,SFF16N65,SFP110N55,SFU6006T,SFP18N50,SFU15N10,SFF5N50,SFF10N65-J,SFN6004T5,SFP59N10,SFD9N20,SCF65R240C,SCD65R640C,SFM3012T,SFS5N10S,SFN0250T2,SCD65R1K15C
SFX6003T 30A,60V N沟道MOSFET
描述- 该资料介绍了SFX6003T型N通道MOSFET的特性、规格和应用。它采用先进的沟槽技术设计,具有低导通电阻和高电流承载能力,适用于多种应用场景。
型号- SFU6003T,SFD6003T,SFX6003T
HI-SEMICON MOSFET在无人机上的应用
无人机应用场景日益完善。无人机产品具有使用成本低、地勤保障要求低、 机动性强、安全性高、提供信息更加及时等优势,相比于传统作业方式,工业无人机更能胜任复杂环境下的作业任务。本文介绍了HI-SEMICON MOSFET在无人机上的应用。
SFAP4580 N沟道和P沟道功率MOSFET
描述- 该资料介绍了SFAP4580双极型增强型MOSFET的特性,包括其N沟道和P沟道的电气参数、热特性、开关特性以及源漏二极管特性。这些信息适用于电源因子校正(PFC)、开关模式电源(SMPS)、不间断电源(UPS)和LED照明等领域。
型号- SFAP4580
HI-SEMICON MOSFET在园林工具上的应用,具有优秀Rdson和EAS性能,较低FOM值
园林工具市场正经历锂电化趋势,其中无刷电机技术受到重视,MOSFET在其中扮演关键角色。深鸿盛电子提供适合园林工具的中低压MOS产品,具有优秀的性能和多种封装选择,满足不同电池供电和电机负载需求。
SGX6008T 60V,80A N沟道功率MOSFET
描述- 该资料介绍了SGX6008T型N通道功率MOSFET的特性、应用范围和订购信息。该器件采用先进的SGT技术和设计,具有低导通电阻和高电流承载能力,适用于多种电源转换和应用。
型号- SGD6008T,SGP6008T,SGM6008T,SGX6008T,SGF6008T
MOSFET的失效机理分析
当向MOSFET施加高于绝对最大额定值BVDSS的电压时,会造成击穿并引发雪崩击穿。发生雪崩击穿时,会流过大电流,存在MOSFET失效的危险。MOSFET雪崩失效包括短路造成的失效和热量造成的失效。本文介绍失效的机理原因。
SFD4004PT-40A、-40V P沟道MOSFET
描述- SFD4004PT是一款采用先进沟槽技术的P沟道MOSFET,具有优异的RDS(ON)和低栅极电荷,适用于多种应用,如PWM应用和电源管理。
型号- SFD4004PT
SFX6005T 60V,50A N沟道功率MOSFET
描述- 该资料介绍了SFX6005T型号的N通道功率MOSFET,采用先进的沟槽技术设计,具有低导通电阻和低栅极电荷。适用于多种应用场景。
型号- SFP6005T,SFU6005T,SFD6005T,SFF6005T,SFX6005T
SFN3005PT-30V,-50A P沟道功率MOSFET
描述- 该资料详细介绍了SFN3005PT型P-CHANNEL功率MOSFET的特性和应用。该器件采用先进的沟槽技术,具有低栅极电荷和优秀的RDS(on)特性,适用于多种应用场景。
型号- SFN3005PT
SFS3401-4.0A,-30V P沟道功率MOSFET
描述- 该资料详细介绍了SFS3401-4.0A, -30V P-Channel Power MOSFET的特性和应用。该器件具有极低的导通电阻,适用于需要高功率密度和卓越效率的应用,如功率因数校正(PFC)、开关电源(SMPS)、不间断电源(UPS)和LED照明电源。
型号- SFS3401
电子商城
现货市场
登录 | 立即注册
提交评论