赛思同步时钟系统,让时间管理更精确!
每当中央电视台新闻联播里熟悉的前奏响起时,我们就能意识到,现在七点钟了。在那个手机、互联网还未普及的年代里,我们往往通过一声“现在是北京时间19点整”来进行对表。
“北京时间”这个看似耳熟能详的词,你是不是真的了解它呢?今天就让小编来跟大家说一说“北京时间”。
在我国,中国科学院国家授时中心承担了国家标准时间(北京时间)的产生、保持和发播任务。我们所有人都能通过起床的闹钟、上下班打卡时间、会议时间等不同的形式感受到这些机制的影响。那“北京时间”究竟是怎么来的呢?是不是也有一面“大钟”告诉科研工作者,现在是几时几分几秒呢?
世界时(Universal Time)
自从人类开始记录太阳的升起和落下以来,我们就一直在测量时间,这也意味着时间测量这门学科有着悠久的历史。在20世纪50年代以前,人们对标准时间的测量和定义来自于对天体运动的观测,比如地球自转一周代表一天。以地球自转而定义的时间是世界时。在过去的40年里,由于种种原因,地球自转的速度在逐渐变慢,以地球自转制定的世界时也就存在误差。
原子时(Atomic Time)
当以天体运动为基础的宏观时间标准不能适应科学发展需要的时候,为了满足更高精度的实际需要,人们的认知又向着另一个方向——微观世界发展,开始到物质的微观世界去寻找具有更稳定周期的物质运动形式用作新的时间测量标准。科学家们发现:位于海平面上的铯-133原子基态的两个超精细能级间在零磁场中跃迁振荡9192631770个周期所持续的时间为一个原子时秒,而这种现象非常稳定。取自微观世界的铯原子内部跃迁所经历的时间作为基准,这样获得的时间称为原子时。
那我们究竟该用世界时还是原子时来作为我们现代计时系统呢?
协调世界时(Universal Time Coordinated)
原子时秒长稳定,但时刻没有物理内涵,而世界时恰好相反,它的秒长不稳定,但它的时刻能和日升日落等变化相对应,而这种规律和人们的日常生活密切相关。
为了协调统一两者,1972年,一种称为协调世界时的折衷时标面世。协调世界时是以原子时秒长为基础,在时刻上尽量接近于世界时的一种时间计量系统。简单来说就是当世界时和原子时时差超过0.9秒后,通过闰秒的方式,使其增加或减少1秒,协调得到的时间尺度就是协调世界时。至今为止,全球已经进行了27次闰秒,离我们最近的一次闰秒是在北京时间2017年1月1日7时59分59秒(时钟显示07:59:60)。
确认过眼神,原来我们都是见证过历史的人。
下一次“闰秒”的出现时间,由于毫无规律,所以暂时还无法推算,不过还是可以浅浅的期待一下。
协调世界时作为全球的时间标准,每个国家都规定一个协调世界时作为国家的标准时间的发播和应用,例如UTC(PTB)、UTC(NICT)、UTC(IT)分别代表了德国、日本和意大利的国家标准时间。我国保持的协调世界时记为UTC(NTSC),其表示0时区的时间,而北京位于东八区时区,所以北京时间 = UTC(NTSC) + 8小时。
北京时间的应用
随着科学生产力的发展,人们对于时间精度的要求也越来越高,比如火箭、卫星的发射,导弹制导,卫星导航系统等都要求时间同步精度能达纳秒级。纳秒级对于我们普通人日常生活而言可能很难体会到,但毫秒量级的时间误差还是很容易在日常生活中感受到。比如机场、高铁站、地铁,5G通信,金融交易,智能电网等方方面面都存在毫秒量级的时间同步应用。
如果高铁站的时间同步误差在秒级,复兴号列车以300km/h的速度行驶,误差1s,则会存在大约83.33米的误差,就好比你站在地标对应的上车位置,而火车还未驶入站台。
赛思利用一级母钟和二级母钟进行时间组网的方式形成高精度的时钟系统,从传统的NTP同步首创采用更高精度的PTP同步方式,实现毫秒级时间同步到微妙级时间同步的跳跃。
赛思轨道交通时钟系统解决方案
赛思已经为全国超过20多个省市提供了高精度轨道交通时钟系统解决方案,受到了客户的一致好评。
赛思部分轨道交通客户
如今我们出行乘坐高铁,按照不同颜色的地标找到对应车厢,火车刚好停在正确的位置,这都归功于高铁站的时刻表精度达毫秒量级,再也不会出现你拖着行李箱在站台狂奔找车厢的场景了。
随着5G时代的到来,一系列智能化的应用场景不断增加,例如自动驾驶、远程医疗、智慧城市等,这些应用对基站间的时间同步要求已经达微秒量级。近期,在中国电信5G网络的加持下,浙江大学医学院附属邵逸夫医院普外科梁霄主任医师通过手术指令操作远在万里的新疆兵团阿拉尔医院手术室内的机械臂,成功为一名当地患者实施了胆囊切除术。如此远距离的“空中医疗”能够顺利完成,有赖于5G网络高速率、大连接和低时延的特点。如果两地基站时延过大,可能会出现信号卡顿、处理不及时、反馈信息迟钝等问题。在5G通信背景下的远程医疗得到了新发展,可以让更多患者享受到高水平、高质量的医疗服务。
远程肝胆手术视频界面
赛思为运营商提供强大功能的BBU池同步解决方案,通过有源放大设备把2路GPS/北斗信号(1主1备)放大后转发至同站址下的多套BBU(级联拓展后系统最高可支持128套)实现多台BBU共享GPS/北斗信号,保障了各大运营商无线基站的高精度时间同步。
赛思BBU池同步解决方案
总的来说,时间同步系统在现代社会中具有重要的应用和意义。它可以确保不同设备之间的时间一致性,提高各个领域的工作效率和安全性。随着技术的不断发展,人们对时间同步系统的需求也越来越高,未来赛思时间同步系统将会继续发展和完善,以适应更多领域的需求。
- |
- +1 赞 0
- 收藏
- 评论 0
本文由ll转载自赛思 微信公众号,原文标题为:科普|同步时钟系统,让时间管理更精确!,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
相关推荐
【技术探讨】ntp时钟同步服务器是什么?ntp时钟同步服务器介绍
ntp时钟同步服务器主要原理:通过接收卫星(北斗、GPS)标准时间信号,然后将这些信号通过特定或者固定的算法、协议处理,再把处理过的时间信号通过各种接口传输给需要时间信息的设备,这样就可以达到整个系统的时间同步。
解析时钟缓冲器与时钟发生器的区别与特性
在电子设备和通信系统中,时钟信号是至关重要的元素。它为我们提供了一个参考点,让我们可以测量时间、同步设备,并进行精确的时间间隔控制。在时钟生成和处理过程中,有两个重要的角色:时钟缓冲器和时钟发生器。尽管它们的名字相似,但它们的功能和工作方式却大相径庭。本文赛思将详细介绍这两种器件的区别与特性。
构建时间网络:时钟同步系统在数字化时代的角色
在数字化浪潮汹涌澎湃的今天,时间不再仅仅是自然界流转的标尺,更是驱动整个数字世界高效运转的核心要素。随着云计算、大数据、物联网等技术的飞速发展,对时间同步的精度和可靠性提出了要求。正是在这样的背景下,时钟同步系统作为构建时间网络的基石,其在数字化时代所扮演的角色愈发重要。本文中赛思来为大家介绍时钟同步系统在数字化时代的作用,希望对各位工程师朋友有所帮助。
时钟芯片的精度范围介绍
时钟芯片,又称为实时时钟(RTC)芯片,是一种集成了计时功能的微控制器。它们可以实时更新系统时钟,并提供基本的时间显示功能。时钟芯片广泛应用于各种电子设备,如计算机、手机、平板电视等,以确保这些设备能够准确地显示时间。本文赛思将为您详细介绍时钟芯片的精度范围。
详解卫星同步时钟的工作原理及应用领域
卫星同步时钟(Satellite Timing Signal,简称STTS)是一种基于卫星通信的高精度时间同步系统。它通过接收地球上空的卫星信号,实现对地面各种时间设备的精准同步。卫星同步时钟可以为各种需要精确时间的应用提供可靠的时间基准,如计算机系统、通信设备、广播电视等。
什么是时钟系统?一文给您解释得明明白白!
时钟是嵌入式系统的脉搏,处理器内核在时钟驱动下完成指令执行,状态变换等动作。外设部件在时钟的驱动下完成各种工作,比如串口数据的发送、A/D转换、定时器计数等等。因此时钟对于计算机系统是至关重要的,通常时钟系统出现问题也是致命的,比如振荡器不起振、振荡不稳、停振等。本文中赛思来为大家详细介绍什么是时钟系统,希望对各位工程师朋友有所帮助。
解析高精度时钟芯片:提升通信和导航系统性能的核心组件
在高速通信和精确导航日益成为现代技术发展的关键因素时,一个看似不起眼的组件——时钟芯片,正逐渐成为提升这些系统性能的核心。芯片提供了一种准确计时的手段,这对于确保数据的同步传输和精确定位至关重要。本文赛思将探讨高精度时钟芯片如何改善通信和导航系统的性能。
赛思时钟服务器SM2000助力轨道交通信号系统时间,提供高精度、高可靠性的时间频率基准信号
本次为金义线提供的SM2000是一款支持IEEE1588的电信级高精度多功能时频融合平台,采用数字锁相环技术和基于FPGA的自主守时算法,提供高精度、高可靠性的时间频率基准信号。该产品通过泰尔实验室检验认证,取得了工信部颁发的1级、2级、3级节点时钟设备入网许可,可以提供符合ITU-T G.811、G.812标准的基准时钟源。
北斗/GPS网络时钟同步系统由什么构成?
如何保证节点设备时间的统一是目前各行业都需要解决的问题。基于北斗/GPS授时服务器很好的利用其网络传送的优势,能够很好的将网络中各设备之间时间做到统一,以保证时钟的同步。本文中赛思来为大家介绍北斗/GPS网络时钟同步系统的构成,希望对各位工程师朋友有所帮助。
赛思同许继电气签署同步时钟装置年度框架采购协议,赋能新能源大规模接入和新型电力系统建设
近日,赛思同许继电气股份有限公司签署同步时钟装置年度框架采购协议。聚焦“源、网、荷、储”四大领域,赛思时频重器携手许继电气超强赋能新能源大规模接入和新型电力系统建设,共振国家“双碳目标”。许继电气采购的赛思同步时钟装置TS3000系列产品,是经电力科学研究院权威检测认证,可提供纳秒级时间信号,可提供独立北斗授时同时满足所有电厂(站)授时需求的高精度时间同步装置。
解析时钟芯片的原理和作用
在现代科技的世界中,时钟芯片是一种基础且关键的电子元件。它们在各种设备和应用中发挥着重要的作用,从简单的闹钟到复杂的计算机系统。本文赛思将详细介绍时钟芯片的原理和作用。
探讨GPS和北斗系统中同步时钟的作用以及它们是如何工作的
全球定位系统(GPS)和北斗导航系统是现代全球卫星导航系统中的两个系统。这些系统利用卫星,地面设备和接收器来确定位置和导航方向。然而,由于信号传输时间的延误,系统需要准确的同步时钟来确保卫星和接收器之间的通信准确无误。本文赛思将探讨GPS和北斗系统中同步时钟的作用以及它们是如何工作的。
浅析时钟系统的重要性及应用场景
时钟系统作为电子信息化发展中的基准必备系统发挥着至关重要的作用,关注时钟同步方式,时间同步精度,时间同步应用的可靠性是保证时间统一有效的发展依据。本文中赛思来为大家浅析时钟系统的重要性及应用场景,希望对各位工程师朋友有所帮助。
详解数字时钟系统中确保时间准确性的重要步骤
为了确保时间的准确性,数字时钟系统应采用一系列重要的步骤来保证其运行的精确性。本文赛思将详细介绍这些重要步骤,以帮助您更好地了解数字时钟系统的运作原理。
探讨同步时钟的概念、原理、应用及其在现代社会中的重要性
时间,是人类社会中重要的元素之一。从古代的天文观测到现代的电子技术,人类对时间的认识和掌握越来越准确。而同步时钟,作为现代社会中广泛应用的时间测量工具之一,其重要性也日益凸显。本文赛思将对同步时钟的概念、原理、应用进行详细介绍,并探讨其在现代社会中的重要性。
电子商城
服务
满足150W内适配器、PD快充、氮化镓快充等主流产品测试需要;并可查看被测开关电源支持协议,诱导多种充电协议输出,结合电子负载和示波器进行高精度测试。测试浪涌电流最大40A。支持到场/视频直播测试,资深专家全程指导。
实验室地址: 深圳 提交需求>
拥有中等规模的SMT、DIP以及成品组装产线;支持PCBA及成品OEM/ODM代工组装制造;在嵌入式系统、物联网系统等具备专业性量产制造的项目组织和服务能力。
提交需求>
登录 | 立即注册
提交评论