数字电路之MOS设计

2023-12-21 芯长征科技公众号
场效应管,MOS管,芯长征科技 场效应管,MOS管,芯长征科技 场效应管,MOS管,芯长征科技 场效应管,MOS管,芯长征科技

1、MOS的基本性质

MOS,即场效应管,四端器件,S、D、G、B四个端口可以实现开和关的逻辑状态,进而实现基本的逻辑门。NMOS和PMOS具有明显的对偶特性:NMOS高电平打开(默认为增强型,使用的是硅栅自对准工艺,耗尽型器件这里不涉及),PMOS低电平打开。在忽略方向的情况下,采用共S极接法,有如下特性:



第一张图是Vds随Vgs变化的情况,用于描述开关特性。后面的逻辑分析一般基于这个原理。

第二张图是Ids随Vds变化的情况的简图,用于描述MOS的静态特性。

MOS的静态特性由两个区域决定:线性区和饱和区。

前者一般是动态功耗的主要原因,后者是静态电压摆幅的决定因素。

线性区有:Id=μCoxW/L[(Vgs-Vth)Vds-1/2Vds^2]

饱和区有:Id=1/2μCoxW/L(Vgs-Vth)^2


后面的MOS器件一般基于这两个区域的电学特性来分析总体的电学特性。电压摆幅、面积、噪声容限、功耗、延时基本上都是源自这个区域的原理。


2、CMOS电路及其改进

(1)最基本的CMOS电路--反相器



这里是反相器的版图草图及电路草图,用于描述反相器的版图位置和逻辑关系。

反相器的功能很简单,就是将Vout输出为Vin的反向。

从功耗上看:PMOS和NMOS静态不存在同时导通,即无静态功耗。由于NMOS和PMOS关断的延时,存在动态功耗。

从电压摆幅上看:NMOS可以将Vout拉到L0(逻辑0),PMOS可以将Vout拉到L1,可以保证全电压摆幅。

从面积上看:PMOS和NMOS各一个,标准的CMOS面积,其他电路的面积以其为参考。

从噪声容限上看:CMOS的标准噪声容限,以其为参考对比其他电路。

从延时看:取决于MOS管的工艺,也是其他电路延时的参考。

小知识:噪声容限的定义



图中g代表斜率,两个噪声容限在对称情况下一般相等,有些特殊的设计需要不对称的噪声容限。可以看到,噪声容限越大,反相器变化越快,响应速度越快。


(2)与门和或门的CMOS实现

使用CMOS实现逻辑,需要的理解上拉网络和下拉网络:

上拉网络:标准CMOS中采用PMOS组成上拉网络,负责实现L1的电压。

下拉网络:标准CMOS中采用NMOS组成下拉网络,负责实现L0的电压。


CMOS中,通过上拉网络和下拉网络的互斥来保证静态下无直通电流,即上拉网络和下拉网络的导通状态总是相反。这意味着上拉网络和下拉网络存在对偶关系---串联对并联。


再关注一个网络的导通关系:

串联的NMOS需要两个输入均为L1,输出才能完成下拉L0,即Y=AB,不完全与逻辑。

并联的PMOS需要两个输入均为L0,输出才能不完成下拉L0,即Y=A+B,不完全或逻辑。

所以,CMOS的与逻辑和或逻辑如下:



由于以NMOS为串并联参考,所以构建的逻辑需要取非。

这个相对于反相器而言,主要是拓展了N网络和P网络,这是后面改进及CMOS与其他电路组合的基础。

由于篇幅问题,这里不再详细描述该电路的特性,只是补充一下扇入和延时之间的关系。


以与非门为例:

A连的MOS(暂称MA)的有源区S不是接地,即Vs被抬高(在Vb=0)。Vth将会随之变高,导致导通所需时间增加,增加延时。这就是扇入为2的状态。一般来说,扇入不宜超过4,否则延时会快速增加。


(3)CMOS改进

CMOS的改进方针就是减少或去除PMOS,主要的思路如下:

1.使用电阻(或者类似电阻功能的器件如恒通MOS管)替代PMOS。问题:下拉时为有比电路,需要设计管子尺寸以保证达到L0的电压要求。

2.使用差分信号驱动NMOS代替PMOS。问题:会多一组反相器和与原来PMOS相当的NMOS。

3.使用DCVSL结构实现CMOS。动态过程中为有比电路,需要设计PMOS的尺寸。

前面两种比较好理解,就不过多说明了,主要关注第三种结构DCVSL的实现原理。


DCVSL,全名差分级联电压开关逻辑,用两个PMOS和两个对偶的互斥输入的NMOS实现逻辑功能,具有使用少量PMOS的优点,支持差分输出。



这就是DCVSL的结构,下面的两个N网络输出为互斥的信号,通过上面两个PMOS的加强实现输出的稳定。基本原理是下面两个N网络总会有一个导通,输出L0,L0使得上面两个PMOS中一个导通,抬高另外一个PMOS的输入使其关闭,实现信号的稳定。实现稳态的过程为有比电路,存在稳定延时。


这个电路与直接使用差分信号输入一个上拉网络为NMOS的结构的区别(也就是第二种思路)的区别在于无需承受上拉NMOS带来的电压摆幅的损失。



3、TG及其改进

(1)传输管逻辑



传输管和传输门的区别在于否是有全电压摆幅,其实现的逻辑功能是一致的。


可以看到,传输管实现逻辑的关系还是串联和并联,并且串联为与,并联为或,需要使用保护电路防止悬空。输出的逻辑与输入的信号有关,这可以作为可编程的电路的单元。


(2)TG逻辑的改进

TG逻辑的改进还是专注于去除PMOS。根据反向输入的NMOS等于PMOS的思路,如上图3中的结构,可以将PMOS替代。可以看到的传输管不能无损传输,信号需要使用反相器恢复稳定。


4、动态电路



静态电路需要保持上拉和下拉电路一直互斥,存在动态损耗。


动态电路的思路则是使用时钟信号保证上下电路互斥,这样只需要一个网络就可以实现目标功能。图中是下拉N网络的电路,还可以使用上拉P网络实现,两者的级联要求正好对偶,可以间隔连接。这就是动态电路的级联的形式一PN连接。还有一种方式就是使用多米诺电路,就是在同N或者同P之间使用反相器保证动态电路预充正确。


接下来说明动态电路的工作方式:

预充-求值

在CLK=0时,P导通,输出预充到1;

在CLK=1时,N导通,读取N网络的导通状态,决定求值为0或者1;

一次预充求值完成后即实现逻辑输出。

问题:求值时输入不能发生改变,否则会出现逻辑x,这意味着动态电路多与时序电路联合使用,构成流水线。

问题:电容存储电荷实现电平存在损耗,需要CLK不断刷新。


动态电路的优化:

第一级动态电路CLK需要P和N两个MOS管,对于第二级动态电路,预充时已知某个信号为0(多米诺为0,PN连接为1),如果输入逻辑为与或者可以保证网络关闭,则可以节约一个网络控制MOS管。


5、组合逻辑分析

(1)电压摆幅

电平需要能够维持在L1和L0两个状态区间内,一旦混乱,就会出现逻辑错误。一般来说,可以使用电平恢复电路维持电压(一个反相器与PMOS构成的电平恢复)。对于长的逻辑链,需要加入BUFF来维持电压(这点在传输管中尤为重要)。



(2)逻辑延时

这部分是分析组合电路的延时的,采用的反相器为标准的估算方法(软件可以实测,但是设计时需要估值),专业词汇叫逻辑努力。


标准反相器链的延时T=tp0+tp0*f,其中tp0是空载延时,f是扇出。f=Cout/Cin,在同尺寸的反相器串联时,f=1,并联时f=N,N为下一级并联的个数。常用术语FO4即是扇出为4的设计。对于不同的


反相器,则需要使用具体的计算得到比例。反相器链采用f=F^(1/N)的优化规则优化。

基于反相器链,可以推导CMOS门链的延时:


反相器常用P:N的W/L为2:1(综合面积,速度,噪声,功耗的考虑值),以此为基准可以推出同等最优尺寸的与非门尺寸为2:2:2:2,或非门尺寸为4:4:1:1,推算原则就是串联翻倍,并联不变的最优尺寸等效规则。


然后是CMOS门的延时:d=p+gh,p为基准延时tp0的倍数,g为电学努力,h为逻辑努力。


以与非门为例,得出下面的参数:

p=2(等效两个理想反相器),g=4/3(A=2+2,B=2+2),h=Cout/Cin(单链,如果有分支,加上b这个参数,即下一级的负载数)。

优化的方法也是一样的,使得f=F^(1/N),即可实现最优延时。f=gh,F=GBH,大写即为连乘的小写。


6、锁存器

限于篇幅,这里不再再画图,大致解释一下锁存器的结构:


类似一个时钟控制开关(一般使用传输门作为开关),时钟打开开关时读取数据,关闭时锁存数据。通过时钟信号实现输出数据在一段时间内(理想情况下为半个周期)与输入隔离。


7、触发器

由两个锁存器和中间一个存储单元(一般是首尾相连的反相器)组成。锁存器的锁存时间相反,输入端锁存器打开时存入数据,锁存时读出数据。与锁存器整个时钟周期都在锁存依靠电平不同,触发器依靠时钟的上升和下降实现数据的存储,且输出整个时钟周期不发生改变。


8、时序逻辑分析

建立时间:数据需要提前于时钟沿的时间,

保持时间:数据需要在时钟沿到来后保持的时间。

传输时间:数据从存储单元传输到输出所需的时间。


具体的分析是复杂的,但是基本的原理是清晰的。建立时间是为了保证数据能够存入存储单元。保持时间是保证数据能度过时钟触发所需的延时。传输时间是保证存储单元数据能够传输到输出。


具体的时序分析是很复杂的,需要考虑许多参数,如时钟的抖动和歪斜。一般这些参数都是计算好的,使用者只需根据计算值设计相应的满足条件即可。基本的修改方法是:


对于关键路径,建立时间不足降低时钟频率,保持时间不足加BUFF。

至于如何修改建立时间和保持时间,那是电路结构的问题,需要设计更加合理的电路。常用的电路结构为C^2MOS结构,即将时钟和反相器组合成的MOS时序电路,有兴趣可以查一下。这个结构可以和多米诺组成流水线的结构。


9、功能模块

加法器、乘法器、多路选择器、移位寄存器、存储器等具有特定逻辑功能的电路所需的是逻辑设计,学习过数字电路的都不会陌生(存储器就是基于存储单元的读写DRAM和基于电容的SRAM),这里已经到了module层次了。这个层次的设计已经可以使用verilog快捷的实现了。优化也可以基于verilog来调试优化每个门的位置和数量。


10、总结

本文从MOS管开始,基本详细地介绍了CMOS的原理,传输管TG的原理、动态电路的结构、组合逻辑延时的分析,简略地介绍了锁存器、触发器及时序电路的分析,联系到了模块层次的数字电路设计,粗浅地介绍了数字电路设计的各个层次,为以后提高数字电路设计能力打下了一定的基础。


技术资料,数据手册,3D模型库,原理图,PCB封装文件,选型指南来源平台:世强硬创平台www.sekorm.com
现货商城,价格查询,交期查询,订货,现货采购,在线购买,样品申请渠道:世强硬创平台电子商城www.sekorm.com/supply/
概念,方案,设计,选型,BOM优化,FAE技术支持,样品,加工定制,测试,量产供应服务提供:世强硬创平台www.sekorm.com
集成电路,电子元件,电子材料,电气自动化,电机,仪器全品类供应:世强硬创平台www.sekorm.com
  • +1 赞 0
  • 收藏
  • 评论 0

本文由玉鹤甘茗转载自芯长征科技公众号,原文标题为:数字电路之MOS设计,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关研发服务和供应服务

评论

   |   

提交评论

全部评论(0

暂无评论

相关推荐

详解IGBT工作原理,看这一篇就够了!

IGBT是变频器的核心部件,自然要分外关注。你可以把IGBT看作BJT和MOS管的融合体,IGBT具有BJT的输入特性和MOS管的输出特性。与BJT或MOS管相比,绝缘栅双极型晶体管IGBT优势在于它提供了比标准双极型晶体管更大的功率增益,以及更高工作电压和更低MOS管输入损耗。

2024-03-27 -  技术探讨

MOS管的寄生电感和寄生电容

寄生电容和寄生电感是指在电路中存在的非意图的电容和电感元件。它们通常是由于电路布局、线路长度、器件之间的物理距离等因素引起的。寄生电感和寄生电容对MOS管的影响是需要考虑和处理的重要因素,合理的设计和优化可以减少其负面影响,提高MOS管的性能。

2024-03-23 -  技术探讨

MOS管工作原理图文+案例,通俗易懂!

文章主要是讲一下关于mos管的基础知识,例如:mos管工作原理、mos管封装等知识。

2024-01-23 -  技术探讨

功率半导体中IGBT芯片的应用范围

IGBT的应用领域非常广泛,不仅限于以上列举的几个领域,随着技术的不断进步和创新,IGBT在更多领域可能有新的应用。

2024-02-15 -  原厂动态

MOS管双电源自动切换电路设计,能0压降实现?

实现双电源自动切换电路,其中利用了三个MOS管进行的电路设计。然而,最近看到了另外两种主副电源自动切换的电路设计,觉得很有实用价值,分享给大家。一、我们主要围绕下面这个电路图展开:VUSB:为外部USB供电VBAT:为锂电池供电Q1:PMOSD1:二极管电路工作设计:1、外部电源供电时,锂电池的供电关断。

2024-03-19 -  设计经验

一文解析MOSFET的结构、原理及测试

MOSFET由MOS(Metal Oxide Semiconductor金属氧化物半导体)+FET(Field Effect Transistor场效应晶体管)这个两个缩写组成。即通过给金属层(M-金属铝)的栅极和隔着氧化层(O-绝缘层SiO2)的源极施加电压,产生电场的效应来控制半导体(S)导电沟道开关的场效应晶体管。

2024-03-01 -  技术探讨

功率器件的基础——PN结是怎样形成的?

半导体的主要器件包括二极管、晶体管、场效应管、集成电路等等。本文在认识这些器件之前,要了解一种重要的半导体结构——PN结。

2023-12-22 -  技术探讨

氮化镓(GaN)功率器件结构与制造工艺

​氮化镓功率器件与硅基功率器件的特性不同本质是外延结构的不同,本文通过深入对比氮化镓HEMT与硅基MOS管的外延结构,再对增强型和耗尽型的氮化镓HEMT结构进行对比,总结结构不同决定的部分特性。此外,对氮化镓功率器件的外延工艺以及功率器件的工艺进行描述,加深对氮化镓功率器件的工艺技术理解。在理解氮化镓功率器件结构和工艺的基础上,对不同半导体材料的特性、不同衬底材料的氮化镓HEMT进行对比说明。

2024-01-31 -  技术探讨

一文秒懂IGBT的工作原理及测试

完成功率半导体器件的完整参数测试,包括IV,CV和Qg,支持在高低温条件下进行参数测试;测试全自动化,B1506A将所有的接线切换通过开关矩阵实现,实现了测量的自动化,既能保证测试精度和重复性,同时极大的提升了测量速度;可以建立Datasheet Characterization测试模板,测试结果可以输出测试数据、Datasheet报告和数据汇总等。

2024-03-01 -  设计经验

MPTO3N60沟槽MOSFET

型号- MPTO3N60

2017/12/26  - 芯长征科技  - 数据手册  - Ver1.0

MOS管体二极管能过多大的电流?

体二极管是MOS管中的一个重要组成部分,它是衬底B与漏极D之间的PN结。由于把B极和S极短路了,因此出现了SD之间的体二极管。今天我们简单来讲下关于体二极管在MOS管中的作用,以及它能承受多大电流。

2024-01-25 -  技术探讨

功率半导体研究框架总论

功率半导体是必选消费品,人需要吃“柴米油盐”,机器同样也需要消耗功率器件,任何和电能转换有关的都需要功率半导体 。从行业增长来看,需求来自于各行各业,单机半导体(硅)含量的提升是核心规律。从行业发展来看,所有技术进步都指向更高的功率 、更小的体积、更低的损耗、更好的性价比。方正证券预计,未来3-4年,IDM模式的企业比fabless在成本端上更有优势。

2024-02-12 -  设计经验

十大最常用电子元器件介绍

对于从事电子行业的工程师来说,电子元器件就像人们日常进口的米饭一样,是每天都需要去接触,每天都需要用到的,但其实里面的门门道道很多工程师未必了解。这里列举出工程师门常用的十大电子元器件,及相关的基础概念和知识,和大家一起温习一遍。

2024-01-24 -  技术探讨

MPTO2N10沟槽MOSFET

型号- MPTO2N10

2016/9/28  - 芯长征科技  - 数据手册  - Ver1.0

MOS管中的密勒效应

Cgs跨接在输入端与地之间,对于输入端来说与基极电阻构成了低通滤波器,会使MOS管的高频性能下降。Cds跨接在输出端与地之间,对于输出端来说与基极电阻构成了低通滤波器,会使MOS管的高频性能下降。本文介绍MOS管中的密勒效应。

2023-12-28 -  技术探讨
展开更多

电子商城

查看更多

品牌:格瑞宝电子

品类:N-Channel MOSFET

价格:¥0.0917

现货: 4,515,560

品牌:格瑞宝电子

品类:N-Channel MOSFET

价格:¥0.0904

现货: 3,651,000

品牌:格瑞宝电子

品类:N-Channel MOSFET

价格:¥0.0884

现货: 3,341,070

品牌:格瑞宝电子

品类:N-Channel MOSFET

价格:¥0.0899

现货: 3,056,990

品牌:格瑞宝电子

品类:N-Channel MOSFET

价格:¥0.0879

现货: 2,784,075

品牌:辰达行

品类:N沟道MOS管

价格:¥0.0494

现货: 2,612,219

品牌:格瑞宝电子

品类:N-Channel MOSFET

价格:¥0.0834

现货: 2,014,821

品牌:格瑞宝电子

品类:N-Channel MOSFET

价格:¥0.1100

现货: 1,995,500

品牌:格瑞宝电子

品类:N-Channel MOSFET

价格:¥0.0904

现货: 1,967,800

品牌:格瑞宝电子

品类:N-Channel MOSFET

价格:¥0.0679

现货: 1,772,550

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

现货市场

查看更多

品牌:HAMOS

品类:SMD-NMOS管

价格:¥0.7200

现货:511,697

品牌:APEC

品类:mos管

价格:¥0.4000

现货:230,000

品牌:Nexperia

品类:场效应管

价格:¥1.4614

现货:138,949

品牌:上海贝岭

品类:Trench MOSFET

价格:¥0.2000

现货:86,752

品牌:Nexperia

品类:N_MOSFET

价格:¥10.3000

现货:68,730

品牌:INFINEON

品类:晶体管

价格:¥10.3000

现货:68,730

品牌:捷捷微电

品类:场效应管

价格:¥3.4442

现货:58,364

品牌:ONSEMI

品类:绝缘栅场效应管

价格:¥2.3000

现货:57,000

品牌:DIODES

品类:场效应管

价格:¥0.9151

现货:54,000

品牌:INFINEON

品类:场效应管

价格:¥7.5712

现货:50,000

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

服务

查看更多

高热流密度液冷板定制

定制液冷板尺寸5mm*5mm~3m*1.8m,厚度2mm-100mm,单相液冷板散热能力最高300W/cm²。

最小起订量: 1片 提交需求>

低功耗测试

提供全面表征产品器件耗电特征及功耗波形、快速瞬态效应、电源优化、表征和仿真测试服务,使用直流电源分析仪测量精度达50µV,8nA,波形发生器带宽100kHz,输出功率300W,示波器200kHz,512 kpts

实验室地址: 深圳/苏州 提交需求>

查看更多

授权代理品牌:接插件及结构件

查看更多

授权代理品牌:部件、组件及配件

查看更多

授权代理品牌:电源及模块

查看更多

授权代理品牌:电子材料

查看更多

授权代理品牌:仪器仪表及测试配组件

查看更多

授权代理品牌:电工工具及材料

查看更多

授权代理品牌:机械电子元件

查看更多

授权代理品牌:加工与定制

世强和原厂的技术专家将在一个工作日内解答,帮助您快速完成研发及采购。
我要提问

954668/400-830-1766(工作日 9:00-18:00)

service@sekorm.com

研发客服
商务客服
服务热线

联系我们

954668/400-830-1766(工作日 9:00-18:00)

service@sekorm.com

投诉与建议

E-mail:claim@sekorm.com

商务合作

E-mail:contact@sekorm.com

收藏
收藏当前页面