Moving Machine Learning To The Tiny Edge
From unlocking mobile phones with facial recognition to setting spam filters to receiving product recommendations, we interact with machine learning (ML) every day. Manufacturers of a variety of products know this and are taking advantage or ML to introduce 1eature-rich, low-power products that stand out in the market.
WHAT ARE ML AND DEEP LEARNING?
A subset of artificial intelligence, MLI includes complex statistical techniques that enable machines to improve at tasks with experience. Deep Learning (DL), a subset of ML, encompasses the algorithms that software uses to train itself and improve at performing tasks -like speech and image recognition - by exposing multilayered neural networks to vast amounts of data.
For DL, engineers create multilayer models with many decision layers. To train a model, engineers present it with many examples of data relevant to a pattern, or patterns of interest. Then, the model finds a statistical structure in the example data, develops rules for recognizing that data, and is able to determine if real-world, In-field data is like the patterns learned from the training data.
Once a trained ML model or algorithm is deployed to run inference in the field, the model classifies the real-world data and gives probabilities that this new data represents a relevant pattern of interest. Thanks to the advances of tinyML, deep neural networks are able to perform meaningful tasks on embedded devices with limited resources.
An ML model is an application-specific, Intelligent, pattern-matching algorithm that has to be administered precisely for application to make the right Inference. A precise ML model can give a company a competitive edge by reducing bandwidth requirements, saving power, and increasing a device's ability to make smarter decisions.
ML AT THE EDGE
Due to the complexity and data burdens ML Involves, widescale ML Implementation on the cloud has raised cost, security, and latency concerns. Given these obstacles, ML Is now more often being conducted at the "edge" meaning data can be stored, processed, and analyzed on the physical device or as near the source as possible. Performing these actions in the local environment instead of sending data to the cloud saves money and protects sensitive information like health care data.
As the demand for wireless products and smaller devices grows, developers are recognizing the benefits of the edge and applying MLs pattern matching at the source, or the tiny edge. Edge-native Al is embedded directly into a microcontroller or microprocessor to offer a smaller footprint and centralized, potentially real-time control for smarter machines that are more secure and reliable. SILICON LABS supports ML In all Series 2 wireless SoCs including newly released BG24 and MG24 products with built-In AI/ML hardware accelerator.
ML continues to expand the smart machine possibilities in industries such as automotive, energy, entertainment food health care, housing, industrial automation, and telecommunications. As the number of ML application ideas grows, so do the tools and technologies that enable ML at the IoT edge, or tinyML. With smaller sizes, devices at the tinyML save energy and reduce costs in addition to enhancing security and lowering latency. This means companies will be better able to interpret data, improve customer satisfaction, and address the ML demand, which has grown drastically since the onset of the COVID-19 pandemic. in March 2022. Fortune Business insights estimated that the ML market will grow from $15.44 billion in 2021 to $209.91 billion by 2029.
BIG FUTURE AT THE TINY EDGE
As Intelligence is pushed down from the cloud closer to the source of the data also known as the endpoint or tiny edge(e.g., a light switch or doorbell itself). data analysis using ML Is becoming more efficient. Reducing latency conserving bandwidth, Increasing privacy, and decreasing costs are all benefits of ML on the tiny edge.
Developers are also seeing the advantages of incorporating ML as a value-added feature to existing embedded applications. With all these benefits, the number of devices running ML at the tiny edge is expected to grow from 4 billion to 12 billion over the next four years-what an exciting prospect!
- |
- +1 赞 0
- 收藏
- 评论 0
本文由PlusLee转载自SILICON LABS,原文标题为:Moving Machine Learning To The Tiny Edge,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
相关推荐
Building a Stickier Smart Home Business – 7 Facts ISP and Telecom Leaders Should Know about IoT
In this blog, Christopher Ince from Silicon Labs explains seven aspects of IoT that ISP and telco leaders should consider in order to build a stickier smart home business.
Silicon Labs紧跟无线标准化浪潮,探讨2023年物联网市场关键趋势和技术发展态势
Silicon Labs首席技术官Daniel Cooley近期接受行业媒体专访,探讨2023年物联网市场关键趋势和技术发展态势。特别提到三个重点关注的细分市场:汽车、医疗健康和蓝牙定位,可望为整个行业带来巨大的机遇。
Silicon Labs联手Unikie拓展边缘物联网应用,强化蓝牙定位解决方案性能
Silicon Labs(芯科科技)与物联网设计伙伴Unikie近期针对边缘智能(Edge AI)和物联网结合的应用强化合作。Unikie拥有近600名嵌入式系统工程专家,可帮助汽车、医疗保健、工业和智能建筑领域的设备OEM充分利用芯科科技的物联网无线连接、低功耗蓝牙(Bluetooth LE)和应用于边缘智能的人工智能和机器学习(AI/ML)解决方案。
芯科科技MG24系列多协议SoC助力Centero工业网络,提升工业无线连接设备性能和安全性
SILICON LABS的合作伙伴Centero运用MG24多协议无线SoC提供了易于集成、兼容的端到端无线IEEE 802.15.4和802.11解决方案,从而满足严格的行业要求。其保证的延迟是安全、关键应用程序所必需的。Centero的解决方案还提供强大的数据存储和使用信息,以及预测性维护(predictive maintenance),从而提高运营效率和工厂安全性。
【IC】Silicon Labs推出全新的2.4 GHz无线PCB模块,为物联网设备制造商提供更快速、更简捷的开发过程
致力于以安全、智能无线技术,打造更加互联世界的领导厂商Silicon Labs(亦称“芯科科技”,NASDAQ:SLAB),宣布推出全新的BGM240P和MGM240P PCB模块。该模块设计旨在为面向智能家居和工业应用的互联产品提供更快的上市时间;全新模块可支持开发人员获得可靠的无线性能、能耗效率并保护设备免受网络攻击。
芯科科技BG2x系列蓝牙SoC引领可穿戴设备创新,打造AI健康生活新纪元
随着人们对个人健康和智能生活的追求不断升温,可穿戴设备市场呈现出蓬勃发展的态势。在这个充满机遇与挑战的领域,Silicon Labs(亦称“芯科科技”)凭借其深厚的技术积累和敏锐的市场洞察,成为了行业的佼佼者。近日,芯科科技的家居和生活业务部可穿戴和生活业务经理Pranay Dixit参与了EEPW电子产品世界的访谈,就可穿戴设备市场的现状、公司战略以及技术创新等方面进行了深入探讨。
EFR32BG24 CSP Wireless SoC Family Data Sheet
型号- EFR32BG24B310F1536IJ42-BR,EFR32XG24,EFR32BG24 FAMILY,EFR32,EFR32BG24
BG24蓝牙SoC具备低功耗、小型化等特性,为CoreHW提供蓝牙RTLS的先进解决方案
Silicon Labs(亦称“芯科科技”)的BG24蓝牙SoC具备低功耗、小型化等特性,并支持蓝牙定位技术包括蓝牙到达角(AoA)和蓝牙信道探测(Channel Sounding),为CoreHW公司提供了最先进的实时定位服务(RTLS) 解决方案,以开发出创新的CoreTag和CoreLocator定位应用产品。
EFR32MG26 Wireless Gecko SoC Family Data Short
型号- EFR32MG26,EFR32MG26B520F3200IM48-A,EFR32MG26B410F3200IM68-A,EFR32MG26B210F3200IM48-A,EFR32MG26B410F3200IM48-A,EFR32MG26B420F3200IM68-A,EFR32MG26B310F3200IL136-A,EFR32MG26B420F3200IM48-A,EFR32MG26B220F2048IM68-A,EFR32MG26B220F3200IM48-A,EFR32MG26B210F2048IM68-A,EFR32MG26B510F3200IL136-,FR32MG26B520F3200IM68-A,EFR32MG26B510F3200IM48-A,EFR32MG26B520F3200IM68-AR,EFR32MG26B510F3200IM68-A
【PCN】Errata Update for EFR32MG22, EFR32BG22 and EFR32FG22(201006882)
型号- EFR32BG22C224F512IM32-CR,EFR32BG22C222F352GM32-C,EFR32BG22C224F512GM40-CR,EFR32MG22C224F512GN32-C,EFR32BG22C224F512IM40-CR,EFR32BG22C224F512GM32-C,EFR32BG22C224F512IM32-C,EFR32BG22C224F512GN32-CR,EFR32MG22C224F512IM40-C,EFR32BG22C222F352GM40-CR,EFR32FG22C121F512GM40-C,EFR32BG22C222F352GN32-C,EFR32MG22C224F512GN32-CR,EFR32BG22C222F352GM32-CR,EFR32BG22C112F352GM32-CR,EFR32FG22,EFR32MG22C224F512IM32-CR,EFR32BG22C112,EFR32BG22,EFR32MG22,EFR32FG22C121F512GM32-CR,EFR32BG22C222F352GM40-C,EFR32BG22C224F512IM40-C,EFR32MG22C224F512IM32-C,EFR32BG22C222F352GN32-CR,EFR32BG22C112F352GM32-C,EFR32MG22C224F512IM40-CR,EFR32BG22C224F512GM32-CR,EFR32BG22C224F512GM40-C,EFR32FG22C121F512GM40-CR,EFR32FG22C121F512GM32-C,EFR32BG22C224F512GN32-C
基于芯科科技MG24多协议SoC开发板演示Matter over Thread灯控制
因应多样物联网应用的连接需求,无线多协议设计已成为行业的显学,而Silicon Labs凭借多年来在无线网状网络、动态多协议技术支持方面的丰富经验,可以为物联网开发人员提供最可靠、稳定的多协议解决方案。本文使用MG24多协议SoC开发板演示Matter over Thread灯控制。
EFR32BG26 Wireless Gecko SoC Family Data Short
型号- EFR32BG26B320F2048IM68-B,EFR32BG26B010F2048IM68-AR,EFR32BG26B320F2048IM48-B,EFR32BG26B310F2048IM48-B,EFR32BG26B310F1024IM68-B,EFR32BG26B310F2048IM68-B,EFR32BG26B310F2048IL136-B,EFR32BG26B320F1024IM68-B,EFR32BG26,EFR32BG26B510F3200IL136-B,EFR32BG26B510F3200IM48-B,EFR32BG26B510F3200IM68-B,EFR32BG26B310F1024IL136-B
Series 2 FG23 SoCs
型号- FG23-DK2600B,EFR32FG23A,EFR32FG23A020F512GM48-B,EFR32FG23A010F256GM48-B,XG13,EFM32,FG23-RB4265B,EFR32FG23B010F128GM40-B,EFR32FG23A020F512GM40-B,EFR32FG23A010F256GM40-B,EFR32FG23A020F256GM48-B,EFR32FG23A011F512GM40-B,XG23-RB4204D,XG23-RB4210A,EFR32FG23,EFR32FG23A020F256GM40-B,EFR32FG23B020F128GM40-B,EFR32FG23B,EFR32,EFR32FG23X0XXFXXXIM40,FG23,EFR32XG13,XG23-PK4210A,EFR32FG23B010F512IM40-B,XG23-PK4204D,XG23,EFR32FG23A021F512GM40-B,EFR32FG23B010F512IM48-B,SI4463,EFR32FG23B020F512IM40-B,SI4467,EFR32FG23A010F512GM48-B,EFR32FG23B020F512IM48-B,SI4468,EFR32FG23A010F512GM40-B
Silicon Labs新SoC系列BG24、MG24上市,全面支持Matter、AI/ML等所有主流的物联网协议
Silicon Labs专注于成为纯粹的物联网领导者,这意味着开发产品,让Silicon Labs的客户通过智能、高效和强大的技术实现差异化。BG24和MG24系列代表了Silicon Labs在实现这些目标方面的最新进展。
电子商城
现货市场
品牌:SILICON LABS
品类:Switch Hall Effect Magnetic Position Sensor
价格:¥2.2924
现货:126,000
登录 | 立即注册
提交评论