MOS管中的密勒效应
Cgs跨接在输入端与地之间,对于输入端来说与基极电阻构成了低通滤波器,会使MOS管的高频性能下降。Cds跨接在输出端与地之间,对于输出端来说与基极电阻构成了低通滤波器,会使MOS管的高频性能下降。虽然Cgs和Cds都使MOS管的高频性能下降,却很好理解。只要知道了这两个容值,和输入输出电阻就可以计算出截止频率,那么我们的输入信号就低于这个截止频率就OK了,但是Cgd怎么理解呢?它跨接在输入和输出两端,对于输入来说等效电容是多少?对于输出来说能效电容是多少呢?
1、一个简单的例子
一个159mV的1K正弦波交流电压源跨接到C1两端,电流表的读数是1mA,通过I=2*pi*f*C*V,我们可以求出C1的容值是1μF。
电容C1还是那个电容,我们在电容的另一端加上反向的1590mV的1K正弦波交流电压源,此时,电流表的读数是11mA。如果我们还用公式I=2*pi*f*C*V来计算C1这个电容,则得到的数值是11μF。原理很简单,第一个例子电容两端电压变化幅度是159mV,第二个例子电容两端变化的幅度是159mV+1590mV,扩大了11倍。如果只从VG1那一端看过去就好像电容也扩大了11倍。同样,如果只从VG2那一端看过去就好像电容扩大了1.1倍。
2、MOS管中的密勒效应
当MOS管处于截止区时,MOS管漏极固定为VDD,对于输入输出端等效电容就是Cgd。当MOS管处于饱和区时,MOS管漏极固定为GND,对于输入输出端等效电容就是Cgd。当MOS管处于放大区时,MOS管漏极电压随着G极电压的增大而反向增大A倍,Cgd对于输入端,等效电容为(1+A)*Cgd,对于输出端,等效电容为(1+1/A)*Cgd。这个现象最早是由美国无线电工程师John Milton Miller在1919年到1920年间,在研究真空管时发现的,后来这个现象就以它的姓氏命名,叫做Miller Effect。
3、密勒平台
由于Miller Effect,在MOS管开启的过程中,GS两端电压在上升过程中有一个平台或凹坑,这个平台就是密勒平台。建立如下仿真模型:
观察电压探头VF2测得的电压,1μs时,VG1开始给MOS管栅极加电压,使徒开启MOS管。
第一阶段:1.4μs之前,MOS管工作在截止区,电压逐渐上升,说明在给MOS管的寄生电容Cgs和Cgd充电,此时输入端的等效电容为Cgs+Cgd。
第二阶段:在1.4μs到1.9μs之间,MOS管开始工作在放大区,此时输入端的等效电容为Cgs+(1+A)*Cgd,因为放大倍数A通常非常大,所以等效的电容也非常大,充电缓慢,出现密勒平台。
第三阶段:在1.9μs以后,MOS管此时处于饱和区,输入端的等效电容为Cgs+Cgd,电容重新恢复到一个比较小的值,栅极电压继续上升。
文章来源:功率半导体生态圈
- |
- +1 赞 0
- 收藏
- 评论 0
本文由玉鹤甘茗转载自芯长征科技公众号,原文标题为:MOS管中的密勒效应,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
相关推荐
数字电路之MOS设计
本文基本详细地介绍了CMOS的原理,传输管TG的原理、动态电路的结构、组合逻辑延时的分析,简略地介绍了锁存器、触发器及时序电路的分析,联系到了模块层次的数字电路设计,粗浅地介绍了数字电路设计的各个层次,为以后提高数字电路设计能力打下了一定的基础。
技术探讨 发布时间 : 2023-12-21
详解IGBT工作原理,看这一篇就够了!
IGBT是变频器的核心部件,自然要分外关注。你可以把IGBT看作BJT和MOS管的融合体,IGBT具有BJT的输入特性和MOS管的输出特性。与BJT或MOS管相比,绝缘栅双极型晶体管IGBT优势在于它提供了比标准双极型晶体管更大的功率增益,以及更高工作电压和更低MOS管输入损耗。
技术探讨 发布时间 : 2024-03-27
MOS管的寄生电感和寄生电容
寄生电容和寄生电感是指在电路中存在的非意图的电容和电感元件。它们通常是由于电路布局、线路长度、器件之间的物理距离等因素引起的。寄生电感和寄生电容对MOS管的影响是需要考虑和处理的重要因素,合理的设计和优化可以减少其负面影响,提高MOS管的性能。
技术探讨 发布时间 : 2024-03-23
功率半导体中IGBT芯片的应用范围
IGBT的应用领域非常广泛,不仅限于以上列举的几个领域,随着技术的不断进步和创新,IGBT在更多领域可能有新的应用。
原厂动态 发布时间 : 2024-02-15
MOS管双电源自动切换电路设计,能0压降实现?
实现双电源自动切换电路,其中利用了三个MOS管进行的电路设计。然而,最近看到了另外两种主副电源自动切换的电路设计,觉得很有实用价值,分享给大家。一、我们主要围绕下面这个电路图展开:VUSB:为外部USB供电VBAT:为锂电池供电Q1:PMOSD1:二极管电路工作设计:1、外部电源供电时,锂电池的供电关断。
设计经验 发布时间 : 2024-03-19
一文秒懂IGBT的工作原理及测试
完成功率半导体器件的完整参数测试,包括IV,CV和Qg,支持在高低温条件下进行参数测试;测试全自动化,B1506A将所有的接线切换通过开关矩阵实现,实现了测量的自动化,既能保证测试精度和重复性,同时极大的提升了测量速度;可以建立Datasheet Characterization测试模板,测试结果可以输出测试数据、Datasheet报告和数据汇总等。
设计经验 发布时间 : 2024-03-01
氮化镓(GaN)功率器件结构与制造工艺
氮化镓功率器件与硅基功率器件的特性不同本质是外延结构的不同,本文通过深入对比氮化镓HEMT与硅基MOS管的外延结构,再对增强型和耗尽型的氮化镓HEMT结构进行对比,总结结构不同决定的部分特性。此外,对氮化镓功率器件的外延工艺以及功率器件的工艺进行描述,加深对氮化镓功率器件的工艺技术理解。在理解氮化镓功率器件结构和工艺的基础上,对不同半导体材料的特性、不同衬底材料的氮化镓HEMT进行对比说明。
技术探讨 发布时间 : 2024-01-31
功率半导体研究框架总论
功率半导体是必选消费品,人需要吃“柴米油盐”,机器同样也需要消耗功率器件,任何和电能转换有关的都需要功率半导体 。从行业增长来看,需求来自于各行各业,单机半导体(硅)含量的提升是核心规律。从行业发展来看,所有技术进步都指向更高的功率 、更小的体积、更低的损耗、更好的性价比。方正证券预计,未来3-4年,IDM模式的企业比fabless在成本端上更有优势。
设计经验 发布时间 : 2024-02-12
一文解析MOSFET的结构、原理及测试
MOSFET由MOS(Metal Oxide Semiconductor金属氧化物半导体)+FET(Field Effect Transistor场效应晶体管)这个两个缩写组成。即通过给金属层(M-金属铝)的栅极和隔着氧化层(O-绝缘层SiO2)的源极施加电压,产生电场的效应来控制半导体(S)导电沟道开关的场效应晶体管。
技术探讨 发布时间 : 2024-03-01
MOS管工作原理图文+案例,通俗易懂!
文章主要是讲一下关于mos管的基础知识,例如:mos管工作原理、mos管封装等知识。
技术探讨 发布时间 : 2024-01-23
MOS管体二极管能过多大的电流?
体二极管是MOS管中的一个重要组成部分,它是衬底B与漏极D之间的PN结。由于把B极和S极短路了,因此出现了SD之间的体二极管。今天我们简单来讲下关于体二极管在MOS管中的作用,以及它能承受多大电流。
技术探讨 发布时间 : 2024-01-25
MOSFET管选型步骤
在一些电路的设计中,不光是开关电源电路中,经常会使用MOS管,正确选择MOS管是硬件工程师经常遇到的问题,更是很重要的一个环节,MOS管选择不好有可能影响到整个电路的效率和成本,了解不同的MOS管部件的细微差别及不同开关电路中的应用,会避免很多问题,本文介绍几点仅供参考。
技术探讨 发布时间 : 2023-12-02
【技术】一文解析MOS管的驱动
在进行驱动电路设计之前,必须先清楚MOS管的模型、MOS管的开关过程、MOS管的栅极电荷以及MOS管的输入输出电容、跨接电容、等效电容等参数对驱动的影响。本文中时科将为大家解析MOS管的驱动。
技术探讨 发布时间 : 2022-08-30
电子商城
现货市场
服务
定制液冷板尺寸5mm*5mm~3m*1.8m,厚度2mm-100mm,单相液冷板散热能力最高300W/cm²。
最小起订量: 1片 提交需求>
可烧录IC封装SOP/MSOP/SSOP/TSOP/TSSOP/PLCC/QFP/QFN/MLP/MLF/BGA/CSP/SOT/DFN;IC包装Tray/Tube/Tape;IC厂商不限,交期1-3天。支持IC测试(FT/SLT),管装、托盘装、卷带装包装转换,IC打印标记加工。
最小起订量: 1pcs 提交需求>
登录 | 立即注册
提交评论