MOS管工作原理图文+案例,通俗易懂!

2024-01-23 芯长征科技公众号
mos管,E-mos管,D-mos管,NMOS mos管,E-mos管,D-mos管,NMOS mos管,E-mos管,D-mos管,NMOS mos管,E-mos管,D-mos管,NMOS

文章主要是讲一下关于mos管的基础知识,例如:mos管工作原理、mos管封装等知识。

 

一、什么是mos管?

mos管是一种具有绝缘栅的FET,其中电压决定了器件的电导率。发明mos管是为了克服 FET 中存在的缺点,如高漏极电阻、中等输入阻抗和较慢的操作。所以mos管可以称为FET的高级形式。

 

mos管常用于切换或放大信号。随着施加的电压量改变电导率的能力可用于放大或切换电子信号。

 

mos管是迄今为止数字电路中最常见的晶体管,因为内存芯片或微处理器中可能包含数十万或数百万个晶体管。由于它们可以由 p 型或 n 型半导体制成,互补的 MOS 晶体管对可用于以CMOS逻辑的形式制造具有非常低功耗的开关电路。

 

在数字和模拟电路中,mos管现在甚至比BJT更常见,下图为mos管的实物图。

 

二、mos管的电路符号

mos管是一个四端器件,具有源极 (S)、漏极 (D) 和栅极端子 (G) 和体 (B) 端子。主体经常连接到源端子,将端子减少到三个。它通过改变电荷载流子(电子或空穴)流动的通道宽度来工作。

 

mos管根据操作类型分为两种类型:增强型mos管和耗尽型mos管。

 

1、增强型mos管(E-mos管

当栅极端子上没有电压时,通道显示最大电导。当栅极端子两端的电压为正或负时,沟道电导率降低。

 

2、耗尽型mos管(D-mos管

当栅极端子上没有电压时,器件不导通。当栅极端子上有最大电压时,器件显示出增强的导电性。

 

3、增强型和耗尽型mos管之间的主要区别

增强型和耗尽型mos管之间的主要区别在于施加到 E-mos管的栅极电压应始终为正,并且它具有阈值电压,高于该阈值电压它会完全导通。

 

对于 D-mos管,栅极电压可以是正的也可以是负的,它永远不会完全导通。另外,D-mos管可以在增强和耗尽模式下工作,而 E-mos管只能在增强模式下工作。

 

mos管根据用于构造的材料进一步分类为n沟道和p通道。所以,一般来说,有 4 种不同类型的mos管。

N 沟道耗尽型mos管

P 沟道耗尽型mos管

N 沟道增强型mos管

P 沟道增强型mos管

 

1、N 沟道mos管

N 沟道mos管称为NMOS,用以下符号表示。

 


根据mos管的内部结构,在耗尽型 mos管 中,栅极 (G)、漏极 (D) 和源极 (S) 引脚是物理连接的,而在增强模式下它们是物理分离的,这就是为什么增强模式mos管的符号出现损坏。

 

2、P 沟道mos管

P 沟道mos管称为PMOS,用以下符号表示。

 


在可用类型中,N 沟道增强型mos管是最常用的mos管。

 

3、N 沟道mos管和 P通道mos管之间的主要区别

N 沟道mos管和 P沟道mos管之间的主要区别在于,在 N 沟道中,mos管开关将保持打开状态,直到提供栅极电压。当栅极引脚接收到电压时,开关(漏极和源极之间)将关闭,在 P 沟道 mos管中,开关将保持关闭,直到提供栅极电压。

 

三、mos管的工作原理

mos管的工作取决于MOS电容,它是源极和漏极之间的氧化层下方的半导体表面。只需分别施加正栅极电压或负栅极电压,即可将其从 p 型反转为 n 型。

 

mos管的主要原理是能够控制源极和漏极之间的电压和电流。它的工作原理几乎就像一个开关,设备的功能基于 MOS 电容。MOS电容是MOS管的的主要部分。

 


当漏源电压(VDS)连接在漏极和源极之间时,正电压施加到漏极,负电压施加到源极。在这里,漏极的 PN 结是反向偏置的,而源极的 PN 结是正向偏置的。在这个阶段,漏极和源极之间不会有任何电流流动。

 

如果我们将正电压 (VGG ) 施加到栅极端子,由于静电引力,P衬底中的少数电荷载流子(电子)将开始积聚在栅极触点上,从而在两个 n+ 区域之间形成导电桥。

 

在栅极接触处积累的自由电子的数量取决于施加的正电压的强度。施加的电压越高,由于电子积累而形成的 n 沟道宽度越大,这最终会增加电导率,并且漏极电流 (ID ) 将开始在源极和漏极之间流动。

 

当没有电压施加到栅极端子时,除了由于少数电荷载流子而产生的少量电流外,不会有任何电流流动。mos管开始导通的最小电压称为阈值电压。

 

1、N沟道mos管的构造

以N 沟道 mos管为例子来了解mos管工作原理。取一个轻掺杂的P型衬底,其中扩散了两个重掺杂的N型区域,作为源极和漏极。在这两个 N+ 区域之间,发生扩散以形成 N 沟道,连接漏极和源极。

 


在整个表面上生长一层薄薄的二氧化硅 (SiO2 ),并制作孔以绘制用于漏极和源极端子的欧姆接触。铝的导电层覆盖在整个通道上,在这个SiO2层上,从源极到漏极,构成栅极。SiO 2衬底连接到公共或接地端子。

 

由于其结构,mos管的芯片面积比 BJT 小得多,与双极结型晶体管相比,其占用率仅为 5%。

 

2、N沟道mos管(耗尽型)的工作原理

首先,我们认为在栅极和沟道之间不存在 PN 结。我们可以观察到,扩散沟道N(两个N+区域之间)、绝缘介质SiO 2和栅极的铝金属层共同形成了一个平行板电容器。

 

如果 Nmos管必须工作在耗尽模式,则栅极端应为负电位,漏极为正电位,如下图所示。

 


当栅极和源极之间没有施加电压时,由于漏极和源极之间的电压,一些电流会流动。让一些负电压施加在VGG上。然后少数载流子即空穴被吸引并在SiO2层附近沉降。但是多数载流子,即电子被排斥。

 

在VGG处具有一定量的负电位时,一定量的漏极电流ID流过源极到漏极。当这个负电位进一步增加时,电子被耗尽,电流ID减小。因此,施加的VGG越负,漏极电流ID的值就越小。

 

靠近漏极的通道比源极(如 FET)消耗得更多,并且由于这种效应,电流会减少。

 

3、N沟道mos管的工作原理(增强型)

如果我们可以改变电压VGG的极性,相同的mos管可以在增强模式下工作。因此,我们考虑栅极源极电压V GG为正的mos管,如下图所示。

 


当栅极和源极之间没有施加电压时,由于漏极和源极之间的电压,一些电流会流动。让一些正电压施加在VGG上。然后少数载流子即空穴被排斥而多数载流子即电子被吸引向SiO 2层。

 

在VGG处具有一定量的正电位时,一定量的漏极电流ID流过源极到漏极。当该正电位进一步增加时,电流ID由于来自源极的电子流动而增加,并且由于施加在VGG的电压而进一步推动这些电流。因此,施加的VGG越正,漏极电流ID的值就越大。由于电子流的增加比耗尽模式更好,电流得到增强。因此,这种模式被称为增强模式mos管。

 

4、P - 沟道 mos管的构造(耗尽型)

Pmos管的构造和工作与 Nmos管相同。取一个轻掺杂的n-衬底,其中扩散了两个重掺杂的P+区。这两个 P+ 区域用作源极和漏极。在表面上生长一层薄薄的SiO 2 。通过该层切割孔以与 P+ 区域接触,如下图所示。

 


2、P沟道mos管的工作原理

当栅极端子在V GG处被赋予比漏源电压V DD负电位时,由于存在 P+ 区域,空穴电流通过扩散的 P 沟道增加,PMOS 工作在增强模式。

 

当栅极端子在V GG处被赋予比漏源电压V DD的正电位时,由于排斥,发生耗尽,因此电流减少。因此 Pmos管在耗尽模式下工作。尽管结构不同,但两种类型的 mos管的工作原理是相似的。因此,随着电压极性的变化,这两种类型都可以在两种模式中使用。

 

四、mos管的特性曲线

 

1、耗尽型mos管的工作状态

耗尽型 mos管通常被称为“开关导通”器件,因为它们通常在栅极端没有偏置电压时处于闭合状态。当我们以正向增加施加到栅极的电压时,沟道宽度将在耗尽模式下增加。这将增加通过沟道的漏极电流 I D。如果施加的栅极电压为负值,则沟道宽度会变小,mos管可能会进入截止区。

 

2、耗尽型mos管的特性曲线

耗尽型mos管晶体管的VI 特性介于漏源电压 (VDS ) 和漏电流 ( ID ) 之间。栅极端子处的少量电压将控制流过通道的电流。在漏极和源极之间形成的沟道将充当良导体,在栅极端子处具有零偏置电压。如果向栅极施加正电压,则沟道宽度和漏极电流会增加,而当我们向栅极施加负电压时,它们会减小。

 


3、增强型mos管的工作状态

mos管在增强模式下的操作类似于打开开关的操作,只有在栅极端施加正电压(+VGS)并且漏极电流开始流过器件时,它才会开始导通。当偏置电压增加时,沟道宽度和漏极电流会增加。但是,如果施加的偏置电压为零或负,则晶体管本身将保持在关闭状态。

 

4、增强型 mos管的特性曲线

增强型 mos管的 VI 特性在漏极电流 (I D ) 和漏源电压 (V DS )之间绘制。VI 特性分为三个不同的区域,即欧姆区、饱和区和截止区。截止区域是mos管将处于关闭状态的区域,其中施加的偏置电压为零。当施加偏置电压时,mos管缓慢地向导通模式移动,并且在欧姆区发生电导率的缓慢增加。最后,饱和区是不断施加正电压且mos管将保持导通状态的区域。

 


确保mos管在承载选定漏极电流时保持“导通”所需的最小导通状态,栅极电压可以从上面的 VI 传递曲线确定。当VIN为高电平或等于VDD时,mos管Q 点沿负载线移动到A点。

 

由于沟道电阻的减小,漏极电流I D增加到其最大值。ID成为独立于VDD的常数值,并且仅取决于VGS。因此,晶体管的行为就像一个闭合的开关,但由于其RDS(on)值,通道导通电阻不会完全降低到零,而是变得非常小。

 

同样,当VIN为低电平或降至零时,mos管Q点沿负载线从 A 点移动到 B 点。通道电阻非常高,因此晶体管就像开路一样,没有电流流过通道。

 

五、mos管的工作区域

 

1、截止区域

截止区域是将处于关闭状态并且零电流流过它的区域。在这里,该装置起到基本开关的作用,并在需要它们作为电气开关操作时使用。

 

这里mos管的工作条件是:

  • 零输入栅极电压 ( V IN )

  • 零漏极电流ID

  • 输出电压VDS = VDD。

因此,对于增强型mos管,导电通道关闭,器件“关闭”。

 


  • 输入和栅极接地(0V)

  • 栅源电压低于阈值电压V GS < V TH

  • mos管为“OFF”(截止区域)

  • 没有漏极电流流动(ID = 0安培)

  • VOUT = VDS = VDD = “1”

  • mos管作为“开路开关”运行

 

然后,当使用 e-mos管作为开关时,我们可以将截止区域或“关闭模式”定义为栅极电压,VGS < VTH因此ID = 0。对于 P 沟道增强型 MOSFET,栅极电位相对于源极必须更正。

 

2、饱和区域

饱和区器件的漏源电流值将保持不变,而不考虑漏源电压的增强。当漏极到源极端子的电压增加超过夹断电压值时,这种情况只会发生一次。在这种情况下,该器件用作闭合开关,其中饱和电流通过漏极到源极端流动。因此,当器件应该执行切换时选择饱和区域。

 


  • 输入和门连接到VDD

  • 栅源电压远大于阈值电压,VGS > VTH

  • mos管为“ON”(饱和区)

  • 最大漏极电流 ( ID = VDD / RL )

  • V DS = 0V(理想饱和度)

  • 最小通道电阻RDS(on) < 0.1Ω

  • 由于RDS(on) , VOUT = VDS ≅ 0.2V

  • mos管作为低电阻“闭合开关”运行

 

然后,当使用 e-mos管作为开关作为栅源电压时,我们可以定义饱和区域或“导通模式”,VGS > VTH。因此ID = 最大值。对于 P 沟道增强型mos管,栅极电位相对于源极必须更负。

 

通过向栅极施加合适的驱动电压,漏源通道的电阻R DS(on)可以从数百 kΩ(实际上是开路)的“关断电阻”变化到“导通电阻”小于 1Ω,有效地起到短路作用。

 

当使用mos管作为开关时,我们可以驱动mos管更快或更慢地“导通”,或者通过高电流或低电流。这种将功率mos管 “打开”和“关闭”的能力允许该器件用作非常高效的开关,其开关速度比标准双极结型晶体管快得多。

 

3、线性/欧姆区域

漏极到源极端子的电流随着漏极到源极路径上的电压的增加而增强的区域。当 mos管件该线性区域内工作时,执行放大器功能。


六、mos管的封装

mos管最常用的封装是 To-220,为了更好地理解,先看一下著名的IRF540N MOSFET的引脚排列(如下所示)。Gate、Drain 和 Source 引脚在下面列出,这些引脚的顺序可能会因制造商而不通。其他流行的 mos管 是IRFZ44N、BS170、IRF520、2N7000等。

 

mos管有不同的封装、尺寸和名称,可用于不同类型的应用。通常,mos管以 4 种不同的封装形式交付,即表面贴装、通孔、PQFN 和 DirectFET。

 

mos管在每种封装中都有不同的名称,如下所示:

表面贴装:TO-263、TO-252、MO-187、SO-8、SOT-223、SOT-23、TSOP-6等。

通孔:TO-262、TO-251、TO-274、TO-220、TO-247 等。

PQFN:PQFN 2x2、PQFN 3x3、PQFN 3.3x3.3、PQFN 5x4、PQFN 5x6等。

DirectFET:DirectFET M4、DirectFET MA、DirectFET MD、DirectFET ME、DirectFET S1、DirectFET SH等。

 

以上就是关于mos管的基础知识,由于时间有限,加上内容比较多,关于mos管的具体应用,特性参数,检测好坏等会在之后进行讲解。


文章来源:功率半导体生态圈

技术资料,数据手册,3D模型库,原理图,PCB封装文件,选型指南来源平台:世强硬创平台www.sekorm.com
现货商城,价格查询,交期查询,订货,现货采购,在线购买,样品申请渠道:世强硬创平台电子商城www.sekorm.com/supply/
概念,方案,设计,选型,BOM优化,FAE技术支持,样品,加工定制,测试,量产供应服务提供:世强硬创平台www.sekorm.com
集成电路,电子元件,电子材料,电气自动化,电机,仪器全品类供应:世强硬创平台www.sekorm.com
  • +1 赞 0
  • 收藏
  • 评论 0

本文由杰西啊杰西转载自芯长征科技公众号,原文标题为:建议收藏 | MOS管工作原理图文+案例,通俗易懂!,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

评论

   |   

提交评论

全部评论(0

暂无评论

相关推荐

数字电路之MOS设计

本文基本详细地介绍了CMOS的原理,传输管TG的原理、动态电路的结构、组合逻辑延时的分析,简略地介绍了锁存器、触发器及时序电路的分析,联系到了模块层次的数字电路设计,粗浅地介绍了数字电路设计的各个层次,为以后提高数字电路设计能力打下了一定的基础。

技术探讨    发布时间 : 2023-12-21

GaN的致命弱点

随着世界在半导体领域寻找新的机遇,氮化镓作为未来电源和射频应用的潜在候选者继续脱颖而出。然而,尽管它提供了所有好处,但它仍然面临着重大挑战;没有P型(P-type)产品。为什么GaN被誉为下一个主要半导体材料,为什么缺乏P型GaN器件是一个主要缺点,这对未来的设计意味着什么?本文中芯长征科技就来为大家解析一二。

技术探讨    发布时间 : 2024-03-31

MOS管的寄生电感和寄生电容

寄生电容和寄生电感是指在电路中存在的非意图的电容和电感元件。它们通常是由于电路布局、线路长度、器件之间的物理距离等因素引起的。寄生电感和寄生电容对MOS管的影响是需要考虑和处理的重要因素,合理的设计和优化可以减少其负面影响,提高MOS管的性能。

技术探讨    发布时间 : 2024-03-23

功率半导体中IGBT芯片的应用范围

IGBT的应用领域非常广泛,不仅限于以上列举的几个领域,随着技术的不断进步和创新,IGBT在更多领域可能有新的应用。

原厂动态    发布时间 : 2024-02-15

MOS管双电源自动切换电路设计,能0压降实现?

实现双电源自动切换电路,其中利用了三个MOS管进行的电路设计。然而,最近看到了另外两种主副电源自动切换的电路设计,觉得很有实用价值,分享给大家。一、我们主要围绕下面这个电路图展开:VUSB:为外部USB供电VBAT:为锂电池供电Q1:PMOSD1:二极管电路工作设计:1、外部电源供电时,锂电池的供电关断。

设计经验    发布时间 : 2024-03-19

详解IGBT工作原理,看这一篇就够了!

IGBT是变频器的核心部件,自然要分外关注。你可以把IGBT看作BJT和MOS管的融合体,IGBT具有BJT的输入特性和MOS管的输出特性。与BJT或MOS管相比,绝缘栅双极型晶体管IGBT优势在于它提供了比标准双极型晶体管更大的功率增益,以及更高工作电压和更低MOS管输入损耗。

技术探讨    发布时间 : 2024-03-27

氮化镓(GaN)功率器件结构与制造工艺

​氮化镓功率器件与硅基功率器件的特性不同本质是外延结构的不同,本文通过深入对比氮化镓HEMT与硅基MOS管的外延结构,再对增强型和耗尽型的氮化镓HEMT结构进行对比,总结结构不同决定的部分特性。此外,对氮化镓功率器件的外延工艺以及功率器件的工艺进行描述,加深对氮化镓功率器件的工艺技术理解。在理解氮化镓功率器件结构和工艺的基础上,对不同半导体材料的特性、不同衬底材料的氮化镓HEMT进行对比说明。

技术探讨    发布时间 : 2024-01-31

功率半导体研究框架总论

功率半导体是必选消费品,人需要吃“柴米油盐”,机器同样也需要消耗功率器件,任何和电能转换有关的都需要功率半导体 。从行业增长来看,需求来自于各行各业,单机半导体(硅)含量的提升是核心规律。从行业发展来看,所有技术进步都指向更高的功率 、更小的体积、更低的损耗、更好的性价比。方正证券预计,未来3-4年,IDM模式的企业比fabless在成本端上更有优势。

设计经验    发布时间 : 2024-02-12

一文秒懂IGBT的工作原理及测试

完成功率半导体器件的完整参数测试,包括IV,CV和Qg,支持在高低温条件下进行参数测试;测试全自动化,B1506A将所有的接线切换通过开关矩阵实现,实现了测量的自动化,既能保证测试精度和重复性,同时极大的提升了测量速度;可以建立Datasheet Characterization测试模板,测试结果可以输出测试数据、Datasheet报告和数据汇总等。

设计经验    发布时间 : 2024-03-01

MOS管中的密勒效应

Cgs跨接在输入端与地之间,对于输入端来说与基极电阻构成了低通滤波器,会使MOS管的高频性能下降。Cds跨接在输出端与地之间,对于输出端来说与基极电阻构成了低通滤波器,会使MOS管的高频性能下降。本文介绍MOS管中的密勒效应。

技术探讨    发布时间 : 2023-12-28

MOS管体二极管能过多大的电流?

体二极管是MOS管中的一个重要组成部分,它是衬底B与漏极D之间的PN结。由于把B极和S极短路了,因此出现了SD之间的体二极管。今天我们简单来讲下关于体二极管在MOS管中的作用,以及它能承受多大电流。

技术探讨    发布时间 : 2024-01-25

一文解析MOSFET的结构、原理及测试

MOSFET由MOS(Metal Oxide Semiconductor金属氧化物半导体)+FET(Field Effect Transistor场效应晶体管)这个两个缩写组成。即通过给金属层(M-金属铝)的栅极和隔着氧化层(O-绝缘层SiO2)的源极施加电压,产生电场的效应来控制半导体(S)导电沟道开关的场效应晶体管。

技术探讨    发布时间 : 2024-03-01

MOSFET管选型步骤

在一些电路的设计中,不光是开关电源电路中,经常会使用MOS管,正确选择MOS管是硬件工程师经常遇到的问题,更是很重要的一个环节,MOS管选择不好有可能影响到整个电路的效率和成本,了解不同的MOS管部件的细微差别及不同开关电路中的应用,会避免很多问题,本文介绍几点仅供参考。

技术探讨    发布时间 : 2023-12-02

MPTO3N60 Trench MOSFET

型号- MPTO3N60

数据手册  -  芯长征科技  - Ver1.0  - 2017/12/26 PDF 英文 下载

MPTO2N10 Trench MOSFET

型号- MPTO2N10

数据手册  -  芯长征科技  - Ver1.0  - 2016/9/28 PDF 英文 下载

展开更多

电子商城

查看更多

品牌:格瑞宝电子

品类:N-Channel MOSFET

价格:¥0.0917

现货: 4,515,560

品牌:格瑞宝电子

品类:N-Channel MOSFET

价格:¥0.0904

现货: 3,651,000

品牌:格瑞宝电子

品类:N-Channel MOSFET

价格:¥0.0884

现货: 3,341,070

品牌:格瑞宝电子

品类:N-Channel MOSFET

价格:¥0.0899

现货: 3,056,990

品牌:格瑞宝电子

品类:N-Channel MOSFET

价格:¥0.0879

现货: 2,784,075

品牌:辰达行

品类:N沟道MOS管

价格:¥0.0494

现货: 2,612,219

品牌:格瑞宝电子

品类:N-Channel MOSFET

价格:¥0.0834

现货: 2,014,821

品牌:格瑞宝电子

品类:N-Channel MOSFET

价格:¥0.1100

现货: 1,995,500

品牌:格瑞宝电子

品类:N-Channel MOSFET

价格:¥0.0904

现货: 1,967,800

品牌:格瑞宝电子

品类:N-Channel MOSFET

价格:¥0.0679

现货: 1,772,550

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

现货市场

查看更多

品牌:HAMOS

品类:SMD-NMOS管

价格:¥0.7200

现货:511,697

品牌:APEC

品类:mos管

价格:¥0.4000

现货:230,000

品牌:上海贝岭

品类:Trench MOSFET

价格:¥0.2000

现货:86,752

品牌:TWGMC

品类:MOS

价格:¥0.1700

现货:69,365

品牌:合科泰电子

品类:MOS管

价格:¥0.1900

现货:42,122

品牌:DIODES

品类:MOS管

价格:¥0.7000

现货:27,000

品牌:安邦

品类:MOS管

价格:¥0.3800

现货:22,070

品牌:TANi

品类:贴片MOS管

价格:¥1.6380

现货:20,000

品牌:TANi

品类:贴片MOS管

价格:¥0.7350

现货:20,000

品牌:TANi

品类:贴片MOS管

价格:¥1.9350

现货:20,000

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

服务

查看更多

高热流密度液冷板定制

定制液冷板尺寸5mm*5mm~3m*1.8m,厚度2mm-100mm,单相液冷板散热能力最高300W/cm²。

最小起订量: 1片 提交需求>

MCU烧录/Flash烧录/CPLD烧录

可烧录IC封装SOP/MSOP/SSOP/TSOP/TSSOP/PLCC/QFP/QFN/MLP/MLF/BGA/CSP/SOT/DFN;IC包装Tray/Tube/Tape;IC厂商不限,交期1-3天。支持IC测试(FT/SLT),管装、托盘装、卷带装包装转换,IC打印标记加工。

最小起订量: 1pcs 提交需求>

查看更多

授权代理品牌:接插件及结构件

查看更多

授权代理品牌:部件、组件及配件

查看更多

授权代理品牌:电源及模块

查看更多

授权代理品牌:电子材料

查看更多

授权代理品牌:仪器仪表及测试配组件

查看更多

授权代理品牌:电工工具及材料

查看更多

授权代理品牌:机械电子元件

查看更多

授权代理品牌:加工与定制

世强和原厂的技术专家将在一个工作日内解答,帮助您快速完成研发及采购。
我要提问

954668/400-830-1766(工作日 9:00-18:00)

service@sekorm.com

研发客服
商务客服
服务热线

联系我们

954668/400-830-1766(工作日 9:00-18:00)

service@sekorm.com

投诉与建议

E-mail:claim@sekorm.com

商务合作

E-mail:contact@sekorm.com

收藏
收藏当前页面