具有更低导通电阻,更高热导率的碳化硅在光伏领域持续发热
光伏—“新基建”和“碳中和”的新宠儿
太阳能作为一种可再生的清洁资源,具有两大优势:
一是可以直接利用,特别是在偏远或者离网区域;二是它足够多:据计算,海平面上,每平方米每天可产生1kW电力,如果考虑日/夜周期,入射角,季节性等因素,每天每平方米或可以产生6kWh电量。
尽管,我们每天都能见到的太阳能是免费的,但如何实现高效率的转化?
转化率20%-30%是理想状态,实际上转换效率可能会因各种原因而降低转换效率:降雨,积雪和灰尘沉积,材料老化以及环境变化,例如由于植被的生长或新建筑物的安装而增加阴影。
提高效率的最大技术之一是逆变器的设计,逆变器将太阳能电池的直流输出转换为交流电流,以便直接消耗或通过电网传输。逆变器通过切换直流输入电流的极性来工作,使其接近交流输出。
其工作原理是:开关频率越高,转换效率越高。简单的开关即可产生方波输出,可以驱动负载,但是谐波会损失更多的电流。因此,逆变器需要平衡开关频率以提高效率、工作电压和功率容量。
碳化硅(SiC)应用优势
碳化硅用作光伏领域前景广阔,目前,我国碳化硅产业已经处于高速发展时期,它的快速发展也带动原材料与设备两个千亿级产业,链接多个核心市场。以光伏领域为例,CASA 数据评估:预计到2025年,碳化硅功率器件在光伏逆变器中的占比将高达50%。综合统计新增和更换两大市场,届时我国光伏领域碳化硅的需求量将达到16万片。
近年来,太阳能电池板的“大尺寸、高功率、大密度”发展趋势非常明显,传统光伏逆变器硅基器件无法满足效率和发热方面的需求,因此各方面性能更优越的碳化硅器件脱颖而出。
碳化硅(SiC)在太阳能发电应用中比硅具有多种优势,其击穿电压是传统硅的十倍以上, 比硅更低的导通电阻,栅极电荷和反向恢复电荷特性,以及更高的热导率。这些特性意味着SiC器件可以在比硅等效器件更高的电压,频率和电流下切换,同时更有效地管理散热。
硅MOSFET广泛用于高达300V的开关应用中,高于该电压时,器件的导通电阻上升,设计者不得不转向较慢的双极器件。SiC的高击穿电压意味着它可以用来制造比硅中可能的电压高得多的MOSFET,同时保留了低压硅器件的快速开关速度优势。开关性能也相对独立于温度,从而在系统升温时实现稳定的性能。
SiC的导热系数也是硅的3倍,可以在更高的温度下运行。硅在175℃左右就无法正常运行,甚至在200摄氏度时直接会变成导体。而SiC直到1000℃左右才发生这种情况。
可以通过两种方式利用SiC的热特性。首先,它可以用于制造功率转换器,而该转换器所需的冷却系统要少于等效的硅系统。另外,SiC在较高温度下的稳定运行可用于空间非常宝贵的情况下制造密集的电源转换系统,例如车辆和蜂窝基站。
由于功率转换效率与开关频率直接相关,因此,SiC既可以处理比硅更高的电压,又可以确保高转换效率所需的超高转换频率,实现了双赢。
“十四五”战略规划和2035年远景目标提出,要加速推动碳化硅等第三代半导体产业化进程。未来随着光伏发电市场的蓬勃发展,光伏逆变器的应用将大幅增长。弹性市场需求叠加刚性政策目标,“光伏热”持续发力,而光伏逆变器作为光伏发电系统的“大脑”,碳化硅顺应时势应用到光伏逆变器中的优势显而易见。
来源:半导体信息
- |
- +1 赞 0
- 收藏
- 评论 0
本文由咪猫转载自芯长征科技公众号,原文标题为:碳化硅在光伏领域持续发热,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
相关推荐
碳化硅:第三代半导体材料的性能优势与应用前景
经过第一代硅基半导体、第二代的砷化镓半导体,半导体材料发展已经来到了属于碳化硅、氮化镓的第三代。碳化硅是第三代半导体产业发展的重要基础材料,碳化硅功率器件以其优异的耐高压、耐高温、低损耗等性能,能够有效满足电力电子系统的高效率、小型化和轻量化要求。在新能源汽车、光伏发电、轨道交通、智能电网等领域具有明显优势。
一篇文章综述中国碳化硅(SiC)产业建设进展
第三代半导体材料为氮化镓GaN、碳化硅SiC、氧化锌ZnO、金刚石C等,其中碳化硅SiC、氮化镓GaN为主要代表。在禁带宽度、介电常数、导热率及最高工作温度等方面碳化硅SiC、氮化镓GaN性能更出色。在5G通信、新能源汽车、光伏等领域头部企业逐步使用第三代半导体,瑞之辰等从业者认为成本下降有望实现全面替代。
瑞之辰:光伏巨头入局碳化硅(SiC)促进产业整合
在当今科技产业的舞台上,碳化硅(SiC)产业呈现出一片蓬勃发展的喜人态势,吸引了众多车企、LED厂商等跨界玩家入局。而部分光伏巨头的加入,让这场没有硝烟的战局愈加激烈。作为主营碳化硅(SiC)功率器件的高科技公司,瑞之辰解读:光伏企业与SiC厂商合作,共同开发原材料和设备,产业整合将成为发展趋势。 光伏与碳化硅(SiC)产业“此消彼长”通威集团、合盛硅业、高测股份、捷佳伟创、迈为股份等主流光伏厂商
新能源汽车碳化硅800V平台架构优势及实现方式解析
受限于硅基IGBT的工作频率和偏大的元件尺寸,目前大部分新能源车产品采用的是400V平台。随着碳化硅半导体技术的发展,越来越多车企打造出基于碳化硅的800V甚至更高的高压平台。SMC桑德斯微电子根据客户的需求设计和生产半导体及相关产品。2015年,SMC布局碳化硅产品的设计、研发与制造,并推出了一系列节能可靠、高性价比的大功率碳化硅产品器件,可广泛运用于包括新能源汽车、光伏、储能、电源等各个领域。
碳化硅很好,但为什么碳化硅IGBT很少见?
为什么市场上少有碳化硅IGBT?这和碳化硅的材料特性息息相关。与标准硅材料相比,碳化硅最大的优势是耐高温、耐高压、损耗低,这也使其成为目前高压大功率应用中的半导体材料首选。总的来说,因制备成本太高,且性能过剩,因此碳化硅IGBT在大多数应用场合都“毫无竞争力”。
碳化硅器件在城市轨道车辆和高速列车中的应用及典型拓扑架构
轨道交通车辆中大量应用功率半导体器件,其牵引变流器、辅助变流器、主辅一体变流器、电力电子变压器、电源充电机都有使用碳化硅器件的需求。其中,牵引变流器是机车大功率交流传动系统的核心装备,将碳化硅器件应用于轨道交通牵引变流器,能极大发挥碳化硅器件高温、高频和低损耗特性,提高牵引变流器装置效率,符合轨道交通大容量、轻量化和节能型牵引变流装置的应用需求,以便提升系统的整体效能。
凌讯微电子授权世强硬创代理,平台新增国产超结MOS/SiC/IGBT等功率器件
近年来,国产功率半导体已在众多领域应用,特别是中高端产品,如超结MOSFET、IGBT、碳化硅等,市场逐渐从依赖进口向国内自给自足转变。 为服务更多硬科技企业实现国产化替代,功率半导体器件制造商广东凌讯微电子有限公司(下称“凌讯微电子”,英文名:LXMICRO)授权世强先进(深圳)科技股份有限公司(下称“世强先进”)代理,进一步扩大国产功率器件市场应用。 资料显示,凌讯微电子(LXMICRO)功
碳化硅功率半导体在光伏储能领域的应用概述
如今的储能系统被要求处理不常见的高水平电流,并且维持高度的可靠性和稳定性,在必要时,它们还需要快速精准地释放储存的能量,这需要高质量的宽禁带功率半导体。与传统硅器件相比,中瑞宏芯(macrocore semiconductor)的碳化硅MOSFET和Diode具有更高的性能和更低的损耗,同时允许能源系统工程师设计出更轻便的系统,从而降低整体系统尺寸和成本。
鲁晶携多款功率器件产品出席第十四届亚洲电源技术发展论坛,为新能源、光伏、充电桩等领域应用提供服务
鲁晶半导体携旗下Si SBD/FRD/SCR、Si MOS/IGBT、SiC Diodes、SiC MOSFET等功率器件产品出席第十四届亚洲电源技术发展论坛,产品广泛应用于各类智能家电、电动工具、新能源、充电桩、光伏、电源、工控等领域。
科普 | 碳化硅功率器件与光伏逆变器的未来
光伏发电是碳化硅器件除电动汽车以外的第二大应用领域。光伏逆变器作为光伏电站的转换设备,主要作用是将太阳电池组件产生的直流电转化为交流电。本文中SMC将为大家分析碳化硅功率器件与光伏逆变器的未来,希望对各位工程师朋友有所帮助。
国基南方加速碳化硅MOSFET技术攻关,建立国内第一条6英寸碳化硅功率产品生产线
国基南方持续推进碳化硅MOSFET关键核心技术攻关和产业化应用,经过集智攻坚,团队建立国内第一条6英寸碳化硅功率产品生产线,在国内率先突破6英寸碳化硅MOSFET批产技术,形成了成套具有自主知识产权的碳化硅功率产品技术体系。
碳化硅功率器件在光伏逆变器的应用案例:可显著改善效率和功率密度
碳化硅功率器件的不断发展,为光伏逆变器的性能提升和成本优化带来了新的可能。碳化硅器件应用于大功率集成度要求高的场合,可显著改善微型逆变器效率和功率密度。本文SMC介绍碳化硅功率器件在光伏逆变器的应用案例。
碳化硅SiC势头不减,瑞之辰坚守行业信心
意法半导体、安森美、英飞凌、罗姆等厂商在不同地点建设工厂;多家碳化硅(SiC)厂商宣布未来几年扩大产能计划;8英寸SiC的推出促进了技术扩展,降低了成本……近期,SiC作为第三代宽禁带半导体材料,在半导体行业中势头不减。在这场SiC技术与产能的竞赛中,深圳市瑞之辰科技早已布局SiC功率器件与封装形式,始终坚持对这一领域的信心。
电子商城
服务
支持定制透气膜的宽度,ePTFE材质,耐温范围-40℃-260℃,防水等级IP67/IP68,具有疏水性(拒水性)和不粘性。
最小起订量: 1 提交需求>
提供稳态、瞬态、热传导、对流散热、热辐射、热接触、和液冷等热仿真分析,通过FloTHERM软件帮助工程师在产品设计初期创建虚拟模型,对多种系统设计方案进行评估,识别潜在散热风险。
实验室地址: 深圳 提交需求>
登录 | 立即注册
提交评论