一文探讨SiC碳化硅单晶的生长
自其发现至今,碳化硅一直深受人们的广泛关注。碳化硅是由各占一半的Si原子和C原子共同组成,通过共享sp3杂化轨道的电子对,以共价键连接形成。在其单晶的基本结构单元中,4个Si原子按正四面体结构排列,C原子位于该正四面体的中心,反之也可将Si原子看作四面体中心,以此形成SiC4或CSi4的四面体结构。SiC中的共价键离子性较强,硅碳键能很高,约为4.47eV。由于堆垛层错能较低,碳化硅晶体在生长过程中易形成各种多型,现已知的就达到200多种,可分为三大类:立方、六方及三方。
图 1
目前SiC晶体的生长方法主要有物理气相传输法(Physical Vapor Transport Method, PVT法)、高温化学气相沉积法(High Temperature Chemical Vapor Deposition, HTCVD法)、液相法(Liquid Phase Method)等。其中,PVT法是已发展较为成熟,更适用于产业化批量生产的方法。
图 2
所谓PVT法,是指将SiC籽晶放置在坩埚顶部,将SiC粉料作为原料放置在坩埚底部,在高温低压的密闭环境下,SiC粉料升华,并在温度梯度和浓度差的作用下向上传输至籽晶附近,达到过饱和状态后再结晶的一种方法。该方法可以实现SiC晶体尺寸和特定晶型的可控生长。
然而,使用PVT法生长SiC晶体需要在长时间的生长过程中,始终维持适宜的生长条件,否则会导致晶格紊乱,从而影响晶体的质量。但SiC晶体的生长是在密闭空间内完成的,有效的监控手段少,变量多,因此工艺控制的难度较高。
图 3
在PVT法生长SiC晶体的过程中,台阶流动生长模式(Step Flow Growth)被认为是单一晶型稳定生长的主要机制。
气化后的Si原子和C原子会优先在kink点位置与晶体表面原子成键,在此处成核生长,从而使得各个台阶平行向前流动。当晶体表面产生台阶宽度远远超过吸附原子的扩散自由程时,大量吸附原子就可能发生团聚,形成的二维岛状生长模式会破坏台阶流动生长模式,导致4H晶型结构信息丢失,从而产生多型缺陷。因此,工艺参数的调节要实现对表面台阶结构的调控,以此抑制多型缺陷的产生,达到获得单一晶型的目的,最终制备出高品质的晶体。
图 4
物理气相传输法作为发展最早的SiC晶体生长方法,是目前生长SiC晶体最为主流的生长方法。该方法相较其它方法对生长设备要求低,生长过程简单,可控性强,发展研究较为透彻,已经实现了产业化应用。HTCVD法的优势是可以生长导电型(n、p)和高纯半绝缘晶片,可以控制掺杂浓度,使晶片中载流子浓度在3×1013~5×1019/cm3之间可调,其劣势是技术门槛高,市场占有率低。随着液相法生长SiC晶体技术的不断成熟,未来其对整个SiC行业的推进将表现出巨大潜力,很可能是SiC晶体生长的新突破点。
- |
- +1 赞 0
- 收藏
- 评论 0
本文由三年不鸣转载自芯长征科技公众号,原文标题为:SiC碳化硅单晶的生长,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
相关推荐
一文解读IGBT及其储能应用价值
储能系统成本主要由电池和储能逆变器构成,两者合计构成电化学储能系统成本的80%,其中储能逆变器占到20%。IGBT绝缘栅双极型晶体管为储能逆变器的上游原材料,IGBT的性能决定了储能逆变器的性能,占逆变器价值量的20%-30%。IGBT在储能领域的主要作用就是变压、变频、交变转换等,是储能应用中不可缺少的器件。
设计经验 发布时间 : 2024-02-20
8英寸SiC晶体生长热场的设计与优化
碳化硅(SiC)材料被认为已经彻底改变了电力电子行业。其宽带隙、高温稳定性和高导热性等特性将为SiC基功率器件带来一系列优势。近年来,随着新能源汽车企业将SiC基MOSFET模块应用于高端汽车,SiC衬底材料的应用前景再次受到广泛关注。SiC单晶采用物理气相传输(PVT)方法制备,6英寸产品投入市场,厚度约为10–30mm。
设计经验 发布时间 : 2024-03-11
【技术】碳化硅晶体结构及4大材料优势
本文介绍蓉矽半导体SiC晶体组成及材料优势。
设计经验 发布时间 : 2023-10-03
碳化硅单晶衬底的常用检测技术何如保证功率半导体器件的性能?
在半导体产业链中,衬底材料作为晶圆制造的基础,不仅提供物理支撑,还负责导热和导电。特别是在SiC功率半导体器件中,由于采用了同质外延技术,衬底的质量直接影响外延材料的品质,进而决定了功率半导体器件的性能。鉴于SiC衬底在半导体器件制造中的重要性,其质量检测是确保器件性能的关键环节。本文简要介绍下SiC单晶衬底常用的检测技术。
技术探讨 发布时间 : 2024-03-26
功率器件市场为什么这么火爆?
电动汽车(EV)和可再生能源的日益普及使功率半导体器件成为人们关注的焦点。这些功率器件对于确定各种系统(从小型家用电子产品到外太空使用的设备)的效率始终至关重要。但随着减少碳排放的呼声越来越高,这些芯片的市场继续蓬勃发展——根据MordorIntelligence的数据,功率IC市场将从2024年的418.1亿美元增长到2028年的492.3亿美元。
行业资讯 发布时间 : 2024-03-30
晶圆级立方碳化硅单晶生长取得新突破
近期,中国科学院物理研究所/北京凝聚态物理国家研究中心的陈小龙团队提出了调控固-液界面能,在异质籽晶上较同质籽晶优先形核和生长的学术思想。该团队自主设计、搭建了超高温熔体表面张力和固-液接触角测试设备,在高温下测量了不同成份熔体的表面张力,熔体与4H-SiC、3C-SiC的接触角,获得了4H-SiC、3C-SiC与高温熔体的固-液界面能的变化规律,验证了界面能调控的可行性。
行业资讯 发布时间 : 2024-03-29
大阪公立大学的研究团队制作出了氮化镓(GaN)晶体管,可使散热能力提高2倍以上
近期,大阪公立大学的研究团队成功利用金刚石为衬底,制作出了氮化镓(GaN)晶体管,其散热性能是使用碳化硅(SiC)衬底制造相同形状晶体管的两倍以上,有望应用于5G通信基站、气象雷达、卫星通信、微波加热、等离子体处理等领域,该研究成果已发表在“Small”杂志上。
行业资讯 发布时间 : 2024-03-20
碳化硅功率半导体生产流程
碳化硅功率半导体生产流程碳化硅功率半导体生产主要包括前道的晶圆加工,包括长晶、切割、研磨抛光、沉积外延;第二部分芯片加工,这部分跟硅基IGBT类似。第一部分,晶圆加工首先,以高纯硅粉和高纯碳粉为原料生长SiC,通过物理气相传输(PVT)制备单晶。第二,使用多线切割设备切割SiC,晶体切成薄片,厚度不超过1毫米第三,通过不同粒度的金刚石研磨液,将晶圆研磨至所需要的平整度和粗糙度。
技术探讨 发布时间 : 2023-12-28
探讨SiC材料如何提升产品性能以超越基于硅材料的领域,为我们全新的数字世界创造下一代解决方案
众所周知,硅(Si)材料及其基础上的技术方向曾经改变了世界。硅材料从沙子中提炼,构筑了远比沙土城堡更精密复杂的产品。如今,碳化硅(SiC)材料作为一种衍生技术进入了市场——相比硅材料,它可以实现更高功率等级的功率转换、更快的开关速度、传热效率上也优于硅材料。本篇博客探讨了SiC材料如何提升产品性能以超越基于硅材料的领域,从而为我们全新的数字世界创造下一代解决方案。
行业资讯 发布时间 : 2024-02-28
华大半导体参加2024(第十八届)北京国际汽车展览会,集中展示SiC晶体和Wafer等车载芯片产品
2024年4月25日至27日,华大半导体应邀参加以“新时代,新汽车”为主题的2024(第十八届)北京国际汽车展览会。华大半导体携旗下上海贝岭、华大电子、小华半导体、中电化合物等多家企业参展,展台上多款汽车级芯片、晶圆、SiC材料及相关客户应用案例受到热烈追捧。
原厂动态 发布时间 : 2024-05-15
华大半导体参加2024(第十八届)北京国际汽车展览会
2024年4月25日至27日,华大半导体应邀参加以“新时代,新汽车”为主题的2024(第十八届)北京国际汽车展览会。华大半导体携旗下上海贝岭、华大电子、小华半导体、中电化合物等多家企业参展,展台上多款汽车级芯片、晶圆、SiC材料及相关客户应用案例受到热烈追捧。
原厂动态 发布时间 : 2024-06-21
CHKA012bSYA 130W Packaged Power Transistor GaN HEMT on SiC in ceramic-metal flange package
型号- CHKA012BSYA/26,CHKA012BSYA
国际领先的功率半导体器件标杆品牌——芯长征科技(Marching Power)
芯长征(Marching Power)集团是国内领先的先进功率芯片产业生态公司,创始团队由中科院、国内外行业资深专家及高级管理人才共同组成,在功率器件领域深耕20年以上。经过多年高速发展,已经形成芯片设计、模组封装、检测设备自主可控的Virtual-IDM企业,主要面向新能源(汽车、光伏、储能、电能质量)、工控类、消费类三大领域。
品牌简介 发布时间 : 2023-11-09
什么是逆变器,为什么它在新能源汽车产业中如此重要?
逆变器是把直流电(如由电池、蓄电瓶产生)转变成交流电(如220V,50Hz正弦波),且频率可调的一种器件。本文介绍逆变器的原理和应用。
技术探讨 发布时间 : 2024-03-23
GaN的致命弱点
随着世界在半导体领域寻找新的机遇,氮化镓作为未来电源和射频应用的潜在候选者继续脱颖而出。然而,尽管它提供了所有好处,但它仍然面临着重大挑战;没有P型(P-type)产品。为什么GaN被誉为下一个主要半导体材料,为什么缺乏P型GaN器件是一个主要缺点,这对未来的设计意味着什么?本文中芯长征科技就来为大家解析一二。
技术探讨 发布时间 : 2024-03-31
服务
提供CE测试服务,通过晶体回路匹配分析,给出测试报告。支持EPSON所有MHz无源晶体、32.768KHz晶体。支持到场/视频直播测试,资深专家全程指导。
实验室地址: 深圳/上海 提交需求>
测试范围:扬兴晶振全系列晶体,通过对晶体回路匹配分析,调整频率、驱动功率和起振能力,解决频偏、不起振、干扰、频率错误等问题。技术专家免费分析,测完如有问题,会进一步晶振烧录/修改电路。
实验室地址: 深圳 提交需求>
登录 | 立即注册
提交评论