雅特力AT32F423系列MCU I2C使用指南
I2C接口简介
I2C接口是由数据线SDA和时钟线SCL构成,在标准模式下通信速度可达到100kHz,快速模式下则可以达到400kHz,增强快速模式可达到1MHz。一帧数据传输从开始信号开始,在结束信号后停止,在收到开始信号后总线被认为是繁忙的,当收到结束信号后,总线被认为再次空闲。I2C接口具有主机和从机模式、多主机功能、可编程建立和保持时间、时钟延展功能、DMA存取数据、支持SMBus 2.0协议等特点。
图1. I2C1框图
I2C1可透过配置CRM中PICLKS寄存器的I2C1SEL位,时钟来源可选择来自SYSCLK、PCLK和HICK,并且支持从Deepsleep mode唤醒,I2C1有模拟滤波器,可以滤掉50ns内的噪声。
图2. I2C2、I2C3框图
I2C2/I2C3时钟来源为PCLK,不支持Deepsleep mode唤醒并且没有模拟滤波器。
I2C接口通信
主机通信流程
一、主机通信初始化
主机时钟初始化
在启动外设(I2CEN)之前,必须先设置I2Cx_CLKCTRL寄存器的各个位用以配置I2C主时钟。
― DIV[7:0]:I2C时钟分频;
― SDAD[3:0]:数据保持时间(tHD;DAT)
― SCLD[3:0]:数据建立时间(tSU;DAT)
― SCLH[7:0]:SCL高电平时间
― SCLL[7:0]:SCL低电平时间
该寄存器的配置可以使用Artery_I2C_Timing_Configuration时钟配置工具计算,见第三章节。
低电平控制:当检测到SCL总线为低电平时,内部SCLL计数器开始计数,当计数值达到SCLL值时,释放SCL线,SCL线变为高电平。
高电平控制:当检测到SCL总线为高电平时,内部SCLH计数器开始计数,当计数值达到SCLH值时,拉低SCL线,SCL线变为低电平,当在高电平期间,如果被外部总线拉低,那么内部SCLH计数器停止计数,并开始低电平计数,这为时钟同步提供了条件。
图3. 主机时钟的产生
2. 主机通信初始化
在启动通讯前须先设定I2C_CTRL2寄存器中的几项参数:
1) 设置传输字节数
≤255字节
配置I2C_CTRL2的RLDEN=0,关闭重载模式
配置I2C_CTRL2的CNT[7:0]=N
>255字节
配置I2C_CTRL2的RLDEN=1,使能重载模式
配置I2C_CTRL2的CNT[7:0]=255
剩余传输字节数N=N-255
2) 设置传输结束模式
ASTOPEN=0:软件结束模式,当数据传输完成后,I2C_STS的TDC标志置1,软件设置GENSTOP=1或者GENSTART=1,发送STOP条件或者START条件。
ASTOPEN=1:自动结束模式,当数据传输完成后,自动发送STOP条件。
3) 设置从机地址
设置寻址的从机地址值(I2C_CTRL2的SADDR)
设置从机地址模式(I2C_CTRL2的ADDR10)
ADDR10=0:7位地址模式
ADDR10=1:10位地址模式
4) 设置传输方向(I2C_CTRL2的DIR)
DIR=0:主机接收数据
DIR=1:主机发送数据
5) 开始传输
设置I2C_CTRL2的GENSTART=1,主机开始在总线上发送START条件和从机地址。
3. 主机10bits寻址的特殊时序初始化
在10位地址传输模式下,I2C_CTRL2的READH10用于产生特殊时序,当READH10=1时,支持如下传输序:主机先发送数据给从机,然后再从从机读取数据,传输时序图如下图所示:
图4. 10位地址的读访问READH10=1
主机在软件结束模式(ASTOPEN=0)下,发送数据到从机,当数据发送完成后设置READH10=1,然后再从从机接收数据。
图5. 10位地址的读访问READH10=0
二、主机通信初始化软件接口
主机通信初始化所用到的软件接口通过独立的函数接口实现,如下:
i2c_init函数三个参数分别为:所使用的I2C、数字滤波值和主机时钟配置值。
i2c_transmit_set函数用于初始化通信参数,包括:所使用的I2C、从机地址、传输字节数、停止条件产生模式和起始条件产生模式。
i2c_addr10_mode_enable函数用于使能10位地址模式。
i2c_addr10_header_enable函数用于使能10位地址头读取时序,即主机发送完整的10位从机地址读序列或主机只发送10位地址的前7位。
三、主机发送流程
1) I2C_TXDT数据寄存器为空,I2C_STS的TDIS=1;
2) 向TXDT数据寄存器写入数据,数据开始发送;
3) 重复1、2步骤直到发送CNT[7:0]个数据;
4) 如果此时I2C_STS的TCRLD=1(重载模式),分为以下两种情况:
剩余字节数N>255:向CNT写入255,N=N-255,TCRLD被自动清0,传输继续;
剩余字节数N≤255:关闭重载模式(RLDEN=0),向CNT写入N,TCRLD被自动清0,传输继续。
5) 结束时序
停止条件产生:
软件结束模式(ASTOPEN=0):此时I2C_STS的TDC置1,设置GENSTOP=1产生STOP条件;自动结束模式(ASTOPEN=1):自动产生STOP条件。
等待产生STOP条件,当STOP条件产生时,I2C_STS的STOPF置1,将I2C_CLR的STOPC写1,清除STOPF标志,传输结束。
图6. I2C主机发送流程图
图7. I2C主机发送时序图
四、主机发送流程软件接口
主机发送通过独立的函数接口实现,如下:
i2c_master_transmit函数为i2c_application.c文件所提供的应用层接口函数,参数包括:I2C结构体指针、从机地址、发送数据指针、发送数据字节数和函数超时时间。
注:此函数为Artery所提供的标准主机发送函数。用户也可根据前述主机发送流程,自行编写主机发送函数。
五、主机接收流程
1) 当收到数据后,RDBF=1,读取RXDT数据寄存器,RDBF被自动清零;
2) 重复步骤2直到接收CNT[7:0]个数据;
3) 如果此时I2C_STS的TCRLD=1(重载模式),分为以下两种情况:
剩余字节数N>255:向CNT写入255,N=N-255,TCRLD被自动清0,传输继续;
剩余字节数N≤255:关闭重载模式(RLDEN=0),向CNT写入N,TCRLD被自动清0,传输继续。
4) 当在接收到最后一个字节时,主机会自动发送一个NACK。
5) 结束时序
停止条件产生:
软件结束模式(ASTOPEN=0):此时I2C_STS的TDC置1,设置GENSTOP=1产生STOP条件;自动结束模式(ASTOPEN=1):自动产生STOP条件。
等待产生STOP条件,当STOP条件产生时,I2C_STS的STOPF置1,将I2C_CLR的STOPC写1,清除STOPF标志,传输结束。
图8. I2C主机接收流程图
图9. I2C主机接收时序图
六、主机接收流程软件接口
主机接收通过独立的函数接口实现,如下:
i2c_master_receive函数为i2c_application.c文件所提供的应用层接口函数,参数包括:I2C结构体指针、从机地址、接收数据指针、接收数据字节数和函数超时时间。
注:此函数为Artery所提供的标准主机接收函数。用户也可根据前述主机接收流程,自行编写主机接收函数。
从机通信流程
一、从机通信初始化
从机地址配置
每个I2C从设备可同时支持2个从设备地址,由OADDR1和OADDR2指定
I2C_OADDR1
通过ADDR1EN使能
通过ADDR1MODE配置为7位(默认)或10位地址
I2C_OADDR2
通过ADDR2EN使能
固定7位地址模式
可通过ADDR2MASK[2:0]来在进行地址匹配比较时屏蔽掉0~7个LSB地址位
ADDR2MASK=0表示7位地址中的每一位都要参与匹配比较
ADDR2MASK=7表示任何非保留地址的7位地址都会被该从设备应答
2. 从机地址匹配
当I2C启用的地址选中匹配时,ADDRF中断状态标志会被置1,如果ADDRIEN位为1,就会产生一个中断。如果两个从地址都使能,在地址匹配产生ADDR中断时,可以查看状态寄存器中的ADDR[6:0]来得知是OADDR1还是OADDR2被寻址了。
3. 从机字节控制模式(通常SMBus模式下才使用)
从设备可以对每个收到的字节进行应答控制。
所需配置:SCTRL=1&RLDEN=1&STRETCH=0&CNT≥1
从机字节控制流程:
1) 每收到一个字节TCRLD置位,时钟延展于第8和第9个脉冲之间
2) 软件读取RXDT中的值,并决定是否置位ACK
3) 软件重装载CNT=1来停止时钟延展
4) 应答或非应答信号在第9个脉冲时刻出现在总线上
注意:
置位SCTRL时,必须开启时钟延展,即STRETCH=0
CNT可以是大于1的值,来实现多个字节以自动ACK接收完毕后再启动应答控制,从设备发送时推荐关闭SCTRL,此时无需字节应答控制。
二、从机通信初始化软件接口
从机通信初始化所用到的软件接口通过独立的函数接口实现,如下:
i2c_own_address1_set函数用于配置OADDR1地址模式以及ADDR1地址值。
i2c_own_address2_set函数用于配置ADDR2地址值以及ADDR2屏蔽位。
i2c_own_address2_enable函数用于使能ADDR2地址。
i2c_slave_data_ctrl_enable函数用于使能从机字节控制模式。
i2c_clock_stretch_enable函数用于使能从机时钟延展功能。i2c_reload_enable函数用于使能发送数据重载模式。
三、从机发送流程
1) 响应主机地址,匹配时回复ACK;
2) TXDT为空时,置位TDIS,从设备写入发送数据;
3) 每发送一个字节会收到ACK,且置位TDIS;
4) 如果收到NACK位:
置位NACKF,产生中断;
从设备自动释放SCL和SDA(以便主设备发送STOP或RESTART);
5) 如果收到STOP位:
置位STOPF,产生中断;
当从机发送开启时钟延展(STRETCH=0)时,在等待ADDRF标志时和发送前一个数据的第9个时钟脉冲后,会把TXDT中的数据拷贝到移位寄存器中,如果此时TDIS还是置位,表示TXDT没有写进待发送数据,将发生时钟延展,如下流程图:
图10. I2C从机发送流程图
需要注意的是,在时钟延展关闭(STRETCH=1)的情况下,如果在将要传输数据的第一个Bit位开始发送之前,也就是SDA边沿产生之前,如果数据还未写入TXDT数据寄存器,那么会发生欠载错误,此时I2C_STS的OUF将会置1,并将0xFF发送到总线。
为了能及时的写入数据,可以在通信开始前,先将数据写入到DT寄存器:软件先将TDBE置1,目的是为了清空TXDT寄存器的数据,然后将第一个数据写入TXDT寄存器,此时TDBE清零。
图11. I2C从机发送时序图
四、从机发送流程软件接口
从机发送通过独立的函数接口实现,如下:
i2c_slave_transmit函数为i2c_application.c文件所提供的应用层接口函数,参数包括:I2C结构体指针、发送数据指针、发送数据字节数和函数超时时间。
注:此函数为Artery所提供的标准从机发送函数。用户也可根据前述从机发送流程,自行编写从机发送函数。
五、从机接收流程
1) 当收到数据后,RDBF=1,读取RXDT数据寄存器,RDBF被自动清零;
2) 重复步骤2直到所有数据接收完成;
3) 等待收到STOP条件,当收到STOP条件时,I2C_STS的STOPF置1,将I2C_CLR的STOPC写1,清除STOPF标志,传输结束。
图12. I2C从机接收流程图
图13. I2C从机接收时序图
六、从机接收流程软件接口
从机接收通过独立的函数接口实现,如下:
i2c_slave_receive函数为i2c_application.c文件所提供的应用层接口函数,参数包括:I2C结构体指针、接收数据指针、接收数据字节数和函数超时时间。
注:此函数为Artery所提供的标准从机接收函数。用户也可根据前述从机接收流程,自行编写从机接收函数。
唤醒深睡眠模式
F423上有3个I2C,其中只有I2C1支持在被寻址到时将系统从深睡眠模式(DEEPSLEEP)唤醒。使用此功能的配置步骤:
1) 使能I2C唤醒深睡眠模式功能(I2C1_CTRL1的WAKEUPEN位置1)
2) 数字滤波器值设置为0(I2C1_CTRL1的DFLT位设为0)
3) 开启时钟延展模式(I2C1_CTRL1的STRETCH位设为0)
4) I2C时钟选择HICK(CRM_MISC2的I2C1SEL位)
关于F423唤醒深睡眠模式更多详细信息请参考《AN0163_AT32F423_PWC_Application_Note》
I2C配置工具
功能简介
I2C配置工具Artery_I2C_Timing_Configuration.exe可以实现对主机和从机的时钟、数字滤波、模拟滤波配置。
资源准备
1) 软件环境Artery_I2C_Timing_Configuration.exe
图14. Artery I2C Timing Configuration
使用步骤
1) 选择芯片型号
选择当前使用的芯片型号,例如可以选择AT32F423。
2) 选择设备模式
Master:主模式,I2C作为主机;
Slave:从模式,I2C作为从机。
3) 选择I2C速度模式
Standard-mode:标准模式,范围0~100kHz;
Fast-mode:快速模式,范围0~400kHz;
Fast-mode Plus:增强快速模式,范围0~1000kHz。
4) 设置I2C速度(单位kHz)
根据实际需求设置I2C通信速度,例如需要通信速度为10kHz,那么这里设置为10。
5) 设置I2C时钟源频率(单位kHz)
根据实际使用的I2C时钟源频率来配置,例如AT32F423 I2C时钟源为PCLK1,当AT32F423主频为96MHz,APB1为96MHz时,这里设置为96000。
6) 模拟滤波使能
On:打开;
Off:关闭。
模拟滤波使能后,将过滤50ns以下的脉冲。
7) 数字滤波(范围0~15)
数字滤波时间=数字滤波值x TI2C_CLK;其中TI2C_CLK=1/I2C时钟源频率。当值为0时,数字滤波关闭,当值>0时将过滤小于数字滤波时间的脉冲。
8) 上升时间(tr单位ns)
SCL和SDA总线的上升沿,如图18所示。I2C协议中规定了在标准模式(Standard-mode)、快速模式(Fast-mode)、增强快速模式(Fast-mode Plus)下的范围,详情请参照表1。上升时间和上拉电阻的阻值关系很大,上拉电阻越小,上升时间越短,可以支持的通信速度就越快,但是功耗也越高。表2中给出了一些常用上拉电阻阻值所对应的上升沿时间,实际可能会因为总线挂的设备数量、布线等差异而有所不同,仅供参考。
9) 下降时间(tf单位ns)
SCL和SDA总线的下降沿,如图18所示。I2C协议中规定了在标准模式(Standard-mode)、快速模式(Fast-mode)、增强快速模式(Fast-mode Plus)下的范围,详情请参照表1。
图15. 上升沿(tr)下降沿(tf)规范
表1. I2C时间规范
表2. 常用上拉电阻阻值的tr、tf参考值(VDD=3.3V)
注:该值是总线上连接两片AT32 MCU,一个作为主机,一个作为从机测试出来的值,实际可能会因为总线挂的设备数量、布线等差异而有所不同。
10) 产生代码点击产生代码,上诉配置的值,将会以代码的形式产生出来,如下图红框所示,只需要将右侧输出的代码替换到自己的程序即可。
图16. 代码产生
- |
- +1 赞 0
- 收藏
- 评论 0
本文由ll转载自AT32 MCU 雅特力科技公众号,原文标题为:AT32讲堂076 | 雅特力AT32F423 I2C使用指南,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
相关推荐
【经验】雅特力AT32F4系列 MCU Cortex M4内核入门指南:位带操作、硬件浮点运算单元、滴答时钟中断功能
AT32F4系列产品是基于Cortex™-M4F处理器架构,该处理器是一款低功耗处理器,具有低门数,低中断延迟和低成本调试的特点。支持包括DSP指令集与浮点运算功能,特别适合用于深度嵌入式应用程序需要快速中断响应功能。
【经验】雅特力AT32 MCU CAN入门指南
CAN是Controller Area Network的缩写(以下称为CAN),它的设计目标是以最小的CPU负荷来高效处理大量的报文。本文介绍雅特力AT32 MCU CAN入门指南
【经验】雅特力AT32 MCU如何使用OTA通过USART实现对固件的在线升级更新
雅特力AT32 MCU如何使用OTA通过USART对固体在线升级更新?OTA(空中下载技术)是用户自己的程序在运行过程中对User Flash的部分区域进行烧写,目的是为了在产品发布后便于通过预留的通信口,对产品中的固件程序进行更新升级。
雅特力32位MCU选型表
雅特力AT32 MCU的选型的相关技术参数如下,32位MCU,多种封装:TSSOP20,QFN28,QFN32,QFN48,LQFP48,LQFP64,LQFP100,LQFP144,稳定的工作温度:-40°C~85°C,-40°C~105°C,频率范围在96MHz~288MHz之间
产品型号
|
品类
|
Core
|
FPU
|
Speed(MHz)
|
Flash(KB)
|
SRAM(KB)
|
I/O
|
Advanced TM(16-bit)
|
GPTM(32-bit)
|
GPTM(16-bit)
|
Basic TM(16-bit)
|
Systick(24-bit)
|
WDT
|
WWDT
|
RTC
|
I2C
|
SPI
|
(F/H)I2S(1)(2)
|
USART/UART
|
SDIO
|
USB Device
|
CAN
|
ADC Engine
|
12-bit ADC ch
|
DAC Engine
|
12-bit DAC ch
|
PKG
|
Size(mm)
|
Temp(℃)
|
AT32F403ZCT6
|
32位MCU
|
M4
|
FPU
|
200MHz
|
256KB
|
96KB/224KB
|
112
|
3
|
2
|
8
|
2
|
1
|
1
|
1
|
1
|
3
|
4
|
0/4
|
3/2
|
2
|
1
|
1
|
3
|
21
|
2
|
2
|
LQFP144
|
20mmx20mm
|
-40℃~85°C
|
选型表 - 雅特力 立即选型
基于雅特力AT32 MCU的洗衣机电机控制驱动方案,解锁智能家居新体验
随着人工智能、物联网等技术的发展,传统家电逐渐向智能家电转型。洗衣机作为家庭生活中不可或缺的电器之一,其智能化升级对于提升生活品质具有重要意义。MCU作为电机控制系统的核心“大脑”,肩负着多样化的控制使命。雅特力AT32 MCU以其卓越的性能和完善的电机开发生态,为洗衣机、电动两轮车和电摩等电机应用产品提供高效电机控制驱动方案,并已实现规模量产。
AT32讲堂 | 解析雅特力AT32 MCU HICK时钟校准
AT32系列MCU内部都有提供适合运行的内部高速时钟(HICK),在25℃下,其典型值频率8MHz的精度由工厂校准到±1%,在-40到105℃,该内部高速时钟的精度达到±2.5%,可见精度会受到温度的影响。为了降低环境温度对精度造成的影响,用户可在运行时间隙调用校准程序来进行校准。
【经验】雅特力MCU AT32F421的时钟配置教程
时钟是芯片正确高效运行的基础,正确的时钟配置是芯片能正确运行的必要条件,其重要性不言而喻。AT32各系列产品的时钟配置部分可能存在细微的差异和需要注意的事项,本文就着重针对各系列的情况来详细介绍如何结合雅特力提供的V2.x.x的板级支持包(BSP)来配置时钟。
【经验】 雅特力AT32 MCU Printf的功能使用方法
内容概述本文档主要介绍雅特力AT32 MCU在Keil和IAR两种工程环境下的printf功能使用方法。其共包含6种方法,各方法的具体用法在具体内容中描述。
AT32讲堂 | 雅特力AT32 MCU的随机数生成
本章介绍了使用软件触发方式触发ADC,配置普通信道和DMA。本篇应用笔记适用于AT32各系列MCU,只要有ADC外设皆可适用。
【经验】雅特力AT32 MCU USB设备库的架构和使用方法
本文主要介绍雅特力MCU AT32 USB设备库的结构和库的使用方法,AT32 USB是基于USB2.0全速设备,不支持USB2.0高速设备。这里库的作用是用来管理USB外设和实现USB的基本协议,使开发者能够更快的上手开发。
【经验】解析雅特力AT32系列MCU RTC入门指南
RTC计数逻辑位于电池供电域,内部为一个32位递增计数器,只要电池供电域有电,RTC便会一直运行,不受系统复位以及VDD掉电影响。本文雅特力将为大家介绍AT32系列MCU的RTC入门指南。
如何在雅特力AT32 MCU上创建IAP应用程序
如何在雅特力AT32 MCU上创建IAP应用程序,文章概述了AT32 CAN IAP快速使用方法即使用CAN进行IAP升级,此示例使用PC上位软件(IAP_Programmer.exe)通过一个USB转CAN的桥接设备和目标板进行通信,IAP Demo和桥接设备默认CAN波特率使用500K。
【经验】如何使用雅特力MCU AT32F407的以太网通信接口实现在应用中编程?
在应用中编程(IAP)是一种在现场通过MCU通信接口(例如USART、USB、CAN和以太网)进行固件升级的方式。本文将介绍两种使用以太网通信外设在雅特力MCU AT32F407上实现IAP的解决方案。
【经验】如何使用雅特力AT32 MCU主机库快速开发USB相关应用
本文主要介绍雅特力MCU AT32 USB主机库的结构和库的使用方法,AT32 USB支持全速和低速,不支持USB2.0高速设备。这里库的作用是用来管理USB外设和实现USB的基本协议,使开发者能够更快的上手开发。
【IC】雅特力AT32系列MCU通过IEC 60730功能安全认证,为家电产品提供安全保障
近日,雅特力AT32 MCU安全库顺利通过IEC 60730功能安全认证,为家电产品提供安全质量保证。国际公认的测试、检验和认证机构SGS为雅特力科技颁发了IEC 60730认证证书,彰显了雅特力科技在家电控制领域的卓越品质和技术实力,也为其在全球范围内的广泛应用奠定了坚实基础。
电子商城
现货市场
服务
可定制显示屏的尺寸0.96”~15.6”,分辨率80*160~3840*2160,TN/IPS视角,支持RGB、MCU、SPI、MIPI、LVDS、HDMI接口,配套定制玻璃、背光、FPCA/PCBA。
最小起订量: 1000 提交需求>
可烧录IC封装SOP/MSOP/SSOP/TSOP/TSSOP/PLCC/QFP/QFN/MLP/MLF/BGA/CSP/SOT/DFN;IC包装Tray/Tube/Tape;IC厂商不限,交期1-3天。支持IC测试(FT/SLT),管装、托盘装、卷带装包装转换,IC打印标记加工。
最小起订量: 1pcs 提交需求>
登录 | 立即注册
提交评论