TO-247封装碳化硅MOSFET中引入辅助源极管脚的必要性
![碳化硅MOSFET,B1M080120HK,B1M080120HC,芯际探索](https://www.sekorm.com/front/website/images/sekormContent.jpg)
![碳化硅MOSFET,B1M080120HK,B1M080120HC,芯际探索](https://www.sekorm.com/front/website/images/sekormContent.jpg)
前言
功率开关器件(如MOSFET, IGBT)广泛应用于新能源汽车、工业、医疗、交通、消费等行业的电力电子设备中,直接影响着这些电力电子设备的成本和效率。因此,实现更低的开关损耗和更低的导通损耗一直是功率半导体行业的不懈追求。相较于传统的硅MOSFET和硅IGBT产品,基于宽禁带碳化硅材料设计的碳化硅MOSFET具有耐压高、导通电阻低,开关损耗小的特点,可降低器件损耗、减小产品尺寸,从而提升系统效率。而在实际应用中,我们发现:带辅助源极管脚的TO-247-4封装更适合于碳化硅MOSFET这种新型的高频器件,它可以进一步降低器件的开关损耗,也更有利于分立器件的驱动设计。
01、TO-247-3与TO-247-4两种封装类型介绍
图1 传统TO-247-3封装的MOSFET类型
传统的TO-247-3封装的MOSFET类型如图1所示,其管脚由栅极、漏极和源极构成。从应用角度来看,驱动回路和功率回路共用了源极的管脚。MOSFET是一个电压型控制的开关器件,其开通关断行为由施加在栅极和源极之间的电压(通常称之为VGS)来决定。从图1模型来看,有几个参数是我们需要特别关注的,因为它对器件的开通关断行为有着非常大的影响。Rg_ext是用户可以用来调整分立器件开通关断的外部电阻,Rg_int是芯片内部的栅极电阻,两者之和称为器件的栅极电阻。门极回路杂散电感Ltrace是驱动回路PCB布局时引入的,而杂散电感Lsource则是封装管脚源极到芯片内部带来的寄生电感。对于漏极到芯片背面的寄生电感Ldrain并没有在驱动回路中,因此不在分析的范围中。
图2 新的TO-247-4封装的碳化硅MOSFET模型
新的TO-247-4封装的碳化硅MOSFET模型如图2所示,我们发现这种封装的管脚数及其管脚定义发生了很大的变化。相对于TO-247-3,这种封装多了一个S极管脚,我们将它称为辅助源极或者开尔文管脚KS(Kelvin Source)。同时,这种封装形式将驱动回路和主功率回路解耦开,有利于驱动板的布局设计。下面,我们先从实战数据的角度来感受一下,TO-247-4这种带辅助源极管脚的封装形式对碳化硅MOSFET这种高速功率开关带来的优势。
02、从数据的角度去分析共源杂散电感对开关损耗的影响
(1)双脉冲测试时的重要注意事项
电流探头的相位校准对传统的硅基分立器件(硅IGBT和硅MOSFET),通常是用柔性电流探头(罗氏线圈)去测试集电极电流或漏极电流。但对于开关速度更快的碳化硅MOSFET,在实际测试过程中,由于柔性电流探头测试的电流存在一定的延迟时间,从而导致碳化硅MOSFET的开通关断损耗的测量存在很大的偏差(如图3所示)。
图3 漏极电流校准前后波形
由上述波形可知,柔性电流探头测试的电流波形ID需要进行13.8ns左右的相移校准,才能将电流探头的相位与电压探头的相位之差校准为0,这样更接近实际的波形,开关损耗值才能更真实。我们进一步比较漏极电流波形校准前后对开关损耗的影响:
图4 漏极电流校准前后开关损耗对比波形
表1 电流探头校准前后的开关损耗统计
由测试数据可知,电流探头校准前后的开通损耗和关断损耗相差非常大,因此测试之前很有必要对电流探头进行校准,避免数据分析误差过大。
(2)开关损耗参数对比
我们采用双脉冲的方法来比较一下TO-247-3和TO-247-4在相同条件下的开关损耗差异。
图5 双脉冲测试方法及测试条件
图6 两种封装的开关损耗对比
B1M080120HK的开通损耗相对于B1M080120HC有了明显的下降,关断损耗也有小幅的下降,整体上来看B1M080120HK的总损耗降低是非常明显的。因此,采用TO-247-4封装,对碳化硅MOSFET这种快速开通关断的器件来说,是非常有吸引力的。
03、TO-247-4辅助源极引脚引入的优势
下面从理论上来解释TO-247-4中辅助源极管脚的技术逻辑,并解释两者开关损耗的差别。
(1)开通过程分析
图7 MOSFET开通过程分析
在MOSFET器件的开通过程,其模型如图7所示,其数学模型如下:
以TO-247-3为例,在MOSFET开通过程中,漏极电流ID迅速上升,较高的电流变化率在功率源极杂散电感Lsource上产生正压降LSource*(dID)/dt(上正下负),该电压降使得MOSFET芯片上的门极电压VGS_int在开通的第一瞬间并不是驱动电压的数值,而是要减掉Lsource上产生的电压。所以开通瞬间的门极电压是少了一截的,这导致ID的上升速度减慢,Eon因此而增大。而对于TO-247-4,门极回路中没有大电流穿过,所以没有来自主功率回路的扰动,芯片的门极能正确地感受到驱动电压。因此,与TO-247-3相比,TO-247-4开通损耗会更低。
(2)关断过程分析
图8 MOSFET关断过程分析
在MOSFET器件的关断过程,其模型如图8所示,其数学模型如下:
以TO-247-3为例,在MOSFET关断过程中,漏极电流ID迅速下降,较高的电流变化率在功率源极杂散电感Lsource上产生负压降LSource*(dID)/dt(上负下正),该电压降使得MOSFET芯片上的门极电压VGS_int在关断的第一瞬间并不是驱动电压的数值,而是要增加Lsource上产生的电压。所以关断瞬间的门极电压是减小比较慢的,这导致ID的下降速度减慢,Eoff因此而增大。而对于TO-247-4封装,门极回路中没有大电流穿过,所以没有来自主功率回路的扰动,芯片的门极能正确地感受到驱动电压。因此,与TO-247-3相比,TO-247-4关断损耗也会更低。
04、结论
引入了辅助源极管脚成为TO-247-4封装的碳化硅MOSFET,避免了驱动回路和功率回路共用源极线路,实现了这两个回路的解耦。同时,TO-247-4封装的开关器件由于没有来自功率源极造成的栅极电压衰减,使得碳化硅MOSFET(TO-247-4封装)的开关速度会比TO-247-3封装的更快,开关损耗更小。因此,当您在使用碳化硅MOSFET进行新方案设计时,为进一步减小碳化硅MOSFET器件的开关损耗以及便于驱动回路的布局设计,建议选择TO-247-4封装的碳化硅MOSFET产品。
- |
- +1 赞 0
- 收藏
- 评论 0
本文由ll转载自芯际探索 微信公众号,原文标题为:TO-247封装碳化硅MOSFET中引入辅助源极管脚的必要性,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
相关推荐
【经验】采用TO-247-4封装的碳化硅MOSFET中引入辅助源极管脚的必要性
在实际应用中,基本半导体发现带辅助源极管脚的TO-247-4封装更适合于碳化硅MOSFET这种新型的高频器件,它可以进一步降低器件的开关损耗,也更有利于分立器件的驱动设计。
【经验】SiC MOSFET的驱动特性及优化
SiC MOSFET(碳化硅MOSFET)以低导通电阻、低开关损耗、高开关频率、高工作结温等优势称为工业界的“明日之星“,但是相对于传统硅基器件,碳化硅器件需要优化相应的外部驱动,以发挥其优异的性能。本文中,国产品牌美浦森将具体分析应该如何优化碳化硅MOSFET的驱动电路。
【经验】碳化硅功率器件如何满足车载充电机OBC中的应用需求?
车载充电机是任何一辆新能源汽车必须配置的功能。车载充电机(On-Board Charger,简称为OBC)的基本功能是:电网电压经由地面交流充电桩、交流充电口,连接至车载充电机,给车载动力电池进行慢速充电。
瞻芯电子推出采用SOT-227封装的SiC模块产品,助力高效、大功率工业应用
近日,瞻芯电子推出了一系列采用SOT-227封装的碳化硅(SiC) MOSFET、碳化硅(SiC)二极管以及混合封装产品。采用SOT-227封装的产品具有模块体积小、热阻低、通流能力强的特点,同时,SOT-227为内绝缘封装,安装简便,也更安全。
SiC-MOSFET让汽车及工业设备更小更高效,宽耐压,开关损耗降低50%
世强硬创联合瑶芯微,爱仕特,派恩杰,瞻芯电子,中电国基南方,带来让汽车及工业设备更小更高效的SiC MOSFET系列产品,最高1700V宽耐压,开关损耗降低50%。
派恩杰·中国电源学会年会“工业报告” | 《基于环流系统的碳化硅功率器件可靠性研究》
派恩杰的雷洋博士在“工业报告”环节做出了《基于环流系统的碳化硅功率器件可靠性研究》的报告分享。雷洋博士就“①SiC MOSFET参数漂移问题、②SiC MOSFET参数漂移研究的环流系统、③实验结论”三大模块论点进行了实验性报告分享,并与会上广大业内同仁共同进行了热烈的交流与实验探讨。
碳化硅很好,但为什么碳化硅IGBT很少见?
为什么市场上少有碳化硅IGBT?这和碳化硅的材料特性息息相关。与标准硅材料相比,碳化硅最大的优势是耐高温、耐高压、损耗低,这也使其成为目前高压大功率应用中的半导体材料首选。总的来说,因制备成本太高,且性能过剩,因此碳化硅IGBT在大多数应用场合都“毫无竞争力”。
1700V SiC MOSFET在大功率能源及工业领域的应用
1700V SiC MOSFET的低开关损耗可提高开关频率,且每个单元的总体尺寸大幅减小。同时,1700V的高阻断电压还可减少达到相同直流电压所需的单元数。在以上种种简化和优化后,终端应用的系统可靠性大大提升,而更少的有源开关和栅极驱动器也降低了整体成本。SMC桑德斯微电子根据客户的需求设计和生产半导体及相关产品。
SMC研发生产的1700V碳化硅MOSFET在辅助电源中的应用
作为一家功率半导体的专业制造商,SMC推出了1700V/1Ω的碳化硅MOSFET。该产品是高电压N型沟道增强型MOSFET,具有极低的总导通损耗,在极端温度下具有稳定的开关特性。此外,SMC生产的MOSFET产品总导通损耗非常低,在极端温度条件下开关特性非常稳定,是特殊作业环境中能量敏感型高频应用的理想之选。
高压快充推动碳化硅SiC器件产业化:新能源汽车市场趋势与技术革新
随着全球新能源汽车市场的蓬勃发展,高压快充技术作为新能源汽车补能的主要解决方案,正逐步成为市场主流。凭借多年来在磁性元器件领域中积累的研发技术、生产经验,铭普已形成PFC电感、共模电感、电源变压器、PLC变压器和塑封逆变电感等系列产品矩阵且积极与碳化硅芯片公司合作。
瞻芯电子荣获SiC行业三大奖项,全面突破新能源汽车主驱、光伏储能、充电桩等众多关键领域市场
2024年12月12日,由行家说主办的“2024碳化硅&氮化镓产业高峰论坛”于深圳召开。瞻芯电子凭借极具竞争力的碳化硅(SiC)功率器件和驱动解决方案,全面突破新能源汽车主驱、光伏储能、充电桩等众多关键领域市场,取得出色的业绩表现,在颁奖礼上荣获三项大奖:“中国SiC IDM十强企业”、“年度影响力产品奖”、“第三代半导体应用推动突破奖”。
瞻芯电子提出新能源汽车恒流预充固态继电器方案,体积大幅降低70%以上,性能优异,成本更低
瞻芯电子提出了一种新颖的高压预充方案,采用恒流控制的buck电路,可将后级母线电容快速充到电池电压。该方案采用碳化硅(SiC)MOSFET和碳化硅(SiC)SBD组成恒流充电回路,整个预充过程电流恒定,既降低了对于功率器件的要求,同时也大大提高了预充速度,而且不需要电阻,即可让后级电容充到母线电压。
【视频】蓉矽高可靠性SiC功率器件在光储充与新能源汽车上的应用
NOVUSEM - 碳化硅MOS,SIC SBD,SIC场效应晶体管,SIC二极管,SIC MOSFET,SI IGBT,SIC MOS,NCD30S40TTD,NC1M120C12HT,NC1M120C12W,NC1D120C10AT,NCD30S20TTD,NC1D120C20KT,NC1D120C30KT,NC1M120C40HT,NC1M120C75HT,光储能系统,电气,OBC,汽车,仪表,充电桩,充电桩模块,新能源汽车,直流充电,光伏逆变器,光伏,储能
中国新能源汽车的几何式发展,倒推SiC碳化硅市场扩张
近年来,中国新能源汽车市场发展迅猛。根据中汽协数据显示,2023年,中国新能源汽车销量达到了949.5万辆,同比增长37.9%。预计2024年,中国新能源汽车销量可能将达到1200-1300万辆,并占据全球新能源汽车总销量的约60%。新能源汽车的迅猛发展,倒推车规级碳化硅SiC功率器件的需求也呈井喷式增长。
【元件】基本半导体新推出Pcore™2汽车级DCM碳化硅MOSFET模块,工作结温高达175℃
汽车级DCM碳化硅MOSFET系列模块PcoreTM2是基本半导体专为新能源汽车主驱逆变器应用设计的一款高功率密度的碳化硅功率模块。产品具有低动态损耗、低导通电阻、高阻断电压、高电流密度、高可靠性等特点,可支持连续运行峰值结温至175℃,以及具备650Arms以上连续峰值相电流输出。
电子商城
登录 | 立即注册
提交评论