探讨差分探头和单端探头的性能和可用性的优缺点
过去在使用高带宽示波器和有源探头进行测量时,您可以选择单端探头,也可以选择差分探头。一般是用单端探头测量单端信号 ( 对地电压 ),用差分探头测量差分信号 ( 正电压-负电压 )。虽然也可以只买差分探头,用差分探头测量差分信号和单端信号,但出于一些实际考虑,多数人并不这样做。理由是,与单端探头相比,差分探头通常价格更高和更难以使用,而且带宽更小。
KEYSIGHT InfiniiMax 探头系统既可用于差分检测,又可用于单端检测,从而很大程度上排除了过去拒绝使用差分探头的理由。新的探头系统使用可更换的探头前端,这些前端特别适用于手动点测、插孔连接和焊入连接等测量方式。
对于这种新的探测方式,您需要确定是用差分探头还是单端探头测量单端信号。为作出最好的决定,您需要考虑差分探头与单端探头在性能和可用性方面的优缺点。
本应用指南在如下几方面比较了差分探头和单端探头的性能和可用性的优缺点 :
– 带宽、保真度和可用性
– 共模抑制
– 输入负载
– 测量可重复性
– 物理尺寸
我们用简化模型 ( 图 1) 帮助比较,并用 Keysight 1134A 7 GHz 探头放大器配合焊入式差分探头前端和焊入式单端探头前端测量数据。这两种探头前端的物理连接尺寸非常接近,因此它们的性能差别主要是因为差分和单端电路元件的布局造成的。图 2 和图 3 是这些探头的照片。
为测量探头性能,我们使用 Keysight E2655C 偏移校正 / 性能验证夹具、Keysight 矢量网络分析仪和 Keysight Infiniium DCA 采样示波器。
差分探头和单端探头的性能带宽、保真度和可用性比较
如前所述,单端探头的带宽通常比差分探头更高。但这一结果是源自某些基本物理定律,还仅仅是源自不同体系结构的实际实现方法?
为回答这一问题,让我们考虑图 1 所示的差分探头和单端探头连接中寄生参数的简化模型。由于单端和差分探头前端的几何尺寸大致相同,因此电感和电容参数的量值也相当。如果接地连接使用又宽又平的导体( 就像“刀片”),单端探头的接地电感(lg)会稍低一些,但也低不到哪里去。应注意差分探头在其两个输入上都有补偿阻尼 (tip resistor),而单端探头只在信号输入上有补偿阻尼,地线上没有阻尼 ( 在实际探头中是 0 Ω 电阻器 )。这些补偿阻尼用于消除输入连接中电感器 (Ls) 和电容器 (Cs) 所造成的谐振。要更深入了解这一话题,请参看是德科技应用指南 1404《高带宽电压探头的保真度》。
从对单端模型的分析,可看到带宽决定于电感值和电容值,其中对地电感 (lg) 非常重要。
在较高频率下,对地电感会在器件接地与探头接地之间产生一个电压,从而减小探头衰减器 / 放大器输入端上的信号。您可通过减小对地电感来增加带宽。这需要缩短接地线的长度,或增加连接的面积。理想的接地线应是非常短、又比较宽的导体平面或围绕信号连接的环形圆柱体 ( 形成同轴的探头连接 )。在实际测量条件下,理想的接地线通常是不存在的,而且会大大降低单端探头的可用性。
此外,给出同轴夹具中的单端探头的技术指标是没有用的,因为在实际测试中,您基本上无法采用这种方式来测量。
如果您分析由差分信号 (vcm=0,vp=vm) 驱动的差分模型,就会看到由于正负信号连接的固有对称性,在连接间就会存在一个没有净信号的平面。您可将这个“有效的”地平面视为牢固地接到器件的地平面和探头放大器的接地端。考虑到有效地平面的存在,即可分析半电路模型,此时信号地的环路面积近似为单端环路面积的一半,所以电感要低得多。从半电路模型分析可以看到,差分模型的带宽要远高于单端模型。此外,有效地平面是理想的接地连接,而且毫不影响其可用性。
当差分探头受单端源驱动时,您可用叠加法确定总响应。当 vcm = vp = vm 时,在电路中施加单端信号。对于叠加的第一项,把 vcm“关闭”;对于叠加的第二项,把 vp 和 vm“关闭”。第一项是单端信号差分部分的响应,因此该响应和前面的讨论一致。第二项是单端信号共模部分的响应,因此其响应决定于探头的共模抑制。如果探头有良好的共模抑制能力,那么对单端信号的总响应就只是对单端信号差模成分的响应。如果探头的共模抑制不好,就会看到测量差分信号和测量单端信号的响应差异。从图 4 可以看到,这些响应实际上并无差别。
图 4 显示了用差分探头检测单端信号 ( 绿色 ) 和用单端探头检测单端信号 ( 蓝色 ) 的频率响应,两者都使用同样的 7 GHz 探头放大器。探头的带宽定义为探头输出幅度相对输入幅度下降到 -3 dB 处的频率。显然,差分探头前端的带宽要比单端探头前端高得多(7.8 GHz 对 5.4 GHz)。这两种探头因为在连接中使用了正确的阻尼电阻,所以都有很高的频率平坦度。
图 5 显示了对于输入约 100 ps 上升时间的阶跃信号,差分探头所测得的时域响应。图 6 显示了对于输入约 100 ps 上升时间的阶跃信号,单端探头所测得的时域响应。在这两个图中,红色轨迹是探头的输出,绿色轨迹是探头的输入。应注意这不是探头的阶跃响应,而只是测量它们能在多大程度上跟踪 100 ps 的阶跃信号。为测量阶跃响应,输入必须是非常完美的、有极快上升时间的阶跃信号,此时差分探头能显示出比单端探头更快的上升时间。这两种探头都能很好地跟踪 100 ps 的阶跃信号。
差分探头和单端探头的性能共模抑制问题
共模抑制是差分探头和单端探头都存在的问题。对差分探头来说。共模抑制使加至 + 和 - 探头输入的相同信号不产生输出。对单端探头来说,共模抑制使加至信号输入和接地输入的相同信号不产生输出。
差分探头和单端探头模型 ( 图 1) 显示了从探头衰减器 / 放大器接地到“大地”的电阻和电感。这是由探头电缆屏蔽层和大地构成的传输线 ( 或天线 ) 所造成阻抗的简化模型。这一“外模式”阻抗是非常重要的,因为在单端探头上施加共模信号时,地电感就与该外模式阻抗构成分压器,从而衰减了放大器得到的地信号。由于放大器的信号输入没有得到与地输入同样的衰减,这就在放大器的输入端造成一个净信号,并由此产生一个输出。地电感越高,共模抑制就越低,因此您在使用单端探头时,务必使地线尽可能短。还应注意该外模式信号并不直接影响“内模式”信号 ( 即同轴电缆内的正常探头输出信号 ),但反射的外模式信号将影响探头放大器的地,从而间接影响内模式信号。“测量可重复性”部分对此有进一步的说明。
当共模信号施加至差分探头时,在 + 和 - 输入端至衰减器 /放大器上可看到同样的信号。所产生的输出将由放大器共模抑制决定,而并非由连接电感造成。
当您检测含有共模噪声的单端信号时,需要确定是差分探头还是单端探头有更好的共模抑制能力。这取决于单端探头的接地连接电感,以及差分探头中放大器的共模抑制能力。对于本例中的差分和单端探头前端,图 7 显示差分探头的共模抑制要比单端探头高得多,因此在高共模噪声环境中能够进行更好的测量。这是两种探头最常见的情况,除非单端探头有极低电感的接地连接,但这在现实中是难以实现的。应注意这里分析的单端探头,其共模抑制能力远好于其他许多单端探头,因为它的地线很短。图 7 中的共模响应定义为 :
差分共模响应 = 20[log(voc/vic)]
这里 vic 是 + 和 - 输入的公共电压
Voc 是施加 vic 时探头输出处的电压
单端共模响应 = 20[log(voc/vic)]
这里 vic 信号输入和地输入的公共电压
voc 是施加 vic 时探头输出处的电压
输入负载效应比较
如果您用差分探头前端和单端探头前端的电感和电容值分析图 1 中的电路模型,您将发现从单端源看过去的各探头前端输入阻抗没有多少差别。分析的另一方面是了解外模式阻抗如何影响差分和单端探头。在单端探头放大器模型中,外模式阻抗要比接地连接阻抗高得多 ( 由于存在 lg),因此它对输入阻抗并没有明显影响。但由于存在外模式阻抗,进入差分探头的单端信号将看到较高频率比较低频率有略低的容抗值。
图 8 是差分探头和单端探头的输入阻抗 ( 幅值 ) 图。红色轨迹是施加差分源时所看到的差分探头阻抗。绿色轨迹是施加单端源时看到的差分探头阻抗,蓝色轨迹是施加单端源时看到的单端探头阻抗。图 8 中标注了这三种情况的直流电阻、电容和最小电感值。应注意差分探头和单端探头对单端信号的输入阻抗很类似。
差分探头和单端探头的性能测量的可重复性
测量的可重复性是与高频探头相关的问题。在理想情况下,探头位置、电缆位置和手的位置都不应造成探头测量结果的变化。但许多情况下都并非如此。通常的原因是外模式阻抗的改变。这一阻抗实际上远比所示的探头模型复杂,因为探头、手和电缆位置都会给未经屏蔽的传输线 ( 或天线 ) 造成极大的影响。
如果您通过改变外模式阻抗分析单端模型,就会发现它可以导致响应变化。此外,由于外模式阻抗也是共模响应中的一个因素,因此该阻抗的变化也会造成共模抑制的变化。接地连接的阻抗越高,响应的变化就越大。
通过改变外模式阻抗分析差分模型,可以发现这一变化只引起很小的响应变化。在探头放大器地上出现的任何信号都会受到放大器的共模抑制。因此,由探头、手和电缆位置引起的响应变化可得到很大的衰减。从第 5 页的图 4 中可以看到,差分探头的响应要比单端探头平滑得多。单端探头响应中有许多由外模式阻抗的变化所造成的“扰动和扭曲”。当阻抗变化时,响应也随之变化。探头电缆上的铁电磁珠能通过衰减和限制外模式信号来减小外模式阻抗的变化量,从而缓解这一问题。它能减小探头、手和电缆位置造成的响应变化。
差分探头和单端探头的性能物理尺寸考虑
通过前面对差分探头和单端探头的比较,可以看到不管是检测差分信号,还是检测单端信号,差分探头在各方面的性能都优于单端探头。但有时仍可考虑使用单端探头。单端探头在许多测量情况下能够提供可接受的结果,此外价格较低,而且由于探头前端较为简单,因而体积也较小。从物理上考虑,小探头能伸入到狭窄的地方进行探测,也能把多个探头接到非常密集的被测点。因此在一个探测系统中,探头最好是既能作差分检测,又能作单端检测。
总结
由于地跳、串扰和 EMI 问题,电子行业正在用差分信号取代单端信号。对于在这一新领域中使用的测量设备,差分检测是必不可少的要求。因为差分探头中信号连接之间的有效地平面比单端探头中的大多数实际地连接 ( 非同轴 ) 更为理想,所以差分探头对单端信号的测量比单端探头更好。新一代差分探头易于使用、性能高、价格低,您可用它们来检测差分信号和单端信号。
- |
- +1 赞 0
- 收藏
- 评论 0
本文由咪猫转载自是德科技 Keysight Technologies知乎,原文标题为:示波器单端探头测差分信号会怎样?,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
相关研发服务和供应服务
相关推荐
什么是高压差分探头?
高压差分探头是一种用于电力电气工程、电子通信技术、航空航天科技的测量仪器。本文中KEYSIGHT将为大家介绍高压差分探头及其放大原理,还将为大家解析差分测量、共模抑制比和防止差分探头防止烧坏示波器的方法等。
解析无源探头和有源探头两者之间的差异
无源探头的目标客户是所有人! 大多数示波器用户几乎在每个行业都使用无源探头,因此它们是每台销售的示波器的标准配置。 无源探头非常适合定量测量——这意味着精度会低于有源探头,但它们使用起来简单且便宜,并且适合基本的电路检查和测量。本文中KEYSIGHT来给大家解析无源探头和有源探头两者之间的差异。
9步走告诉你如何使用示波器
示波器的使用方法, 一方面取决于您现有的示波器的型号和配件,另一方面取决于您想要进行的测量活动。本文介绍了9个简要步骤可满足大多数标准使用情况。
【经验】示波器的使用:如何记录和保存示波器测试结果
是德科技为您演示如何记录示波器的数据。在本文中,您将了解如何保存并调用各种示波器文件类型,包括图像、参考波形和设置。对于本实验,您必须有权访问个人 USB 存储设备。
【经验】如何升级Keysight(原安捷伦)示波器固件?
世强硬创开放实验室有不少是德科技(Keysight)示波器,固件版本都比较老了,以至于一些配件无法正确的识别和匹配,比如1147B探头,被示波器识别为1147A。本文把DSO5000示波器和6000示波器固件升级一下,这里和大家分享升级方法和过程。
用示波器进行开关电源测量时,浮地测量8个实用的小技巧
很多初级工程师在用多个探头进行电源测量时,刚开机电源产品就“炸机”,甚至示波器也发生损坏。电源测试中大多数电压测试是浮地测量,需要用差分探头测试。 这是因为示波器探头之间是共地的,在同时测量电源原边和副边的时候,如果用一根探头接原边的地,另一根探头接副边的地,相当于把电源的原边和副边的地短路在一起,这样短路后的大电流就会烧坏电源产品和探头,甚至是损坏示波器。
【经验】示波器的远程控制及自动化测试教程
示波器作为电子行业最常用的测量仪器之一,牵涉着大量的图片导入导出,数据处理,自动化操作等等。是德科技给大家详细介绍示波器的远程控制步骤包括分享一种无编程既可基础快速实现自动化测试的软件。
【经验】示波器使用同轴线测试高速差分信号技巧
我们使用示波器测试高速差分信号时,可以使用差分探头,也可以使用射频同轴线缆。是德科技的S系列和EXR系列示波器以上都有自动差分功能,首先打开示波器的Setup-Channel菜单,我们会看到示波器通道设置菜单。
为什么尽量使用尽量短的引线来保持示波器探头带宽和精度?
为了进行最准确的测量,最好使用尽量短的示波器探头探针。示波器探头对您的设备施加的电阻、电容和电感负载效应会影响您在示波器屏幕上看到的信号。这些负载效应可能会改变被测电路的工作状态。了解这些负载效应,有助于您避免为特定的电路或系统选择错误探头。
Keysight(是德科技)Infiniium 示波器探头和附件选型指南(英文)
目录- Probe Compatibility Table InfiniiMax Active Probe System Overview Optical-to-Electrical Converter Active Termination Adapter InfiniiMode Active Probes Single-Ended Active Probes General Purpose Differential Active Probes AC/DC Current Probes High-Sensitivity Current Probe General Purpose Passive Probes High Voltage Passive Probe Mixed Signal Oscilloscope Logic Probes and Accessories Probing Accessories
型号- N2830A,N7008A,N7040A,P6241,P6243,E2614A,P6245,1250-4403,P6246,P6247,P6248,P6249,N5439A,N1022B,MX0103A,N2878A,N4839A,N27891A,N7007A,P6701B,P6250,P6251,E2615A,N2768A,N2877A,N2744A,90000X,N7042A,E2616A,MX0105A,90000 X,90000A,E5404A,N4829A,N2779A,N2888A,N2876A,N2750A SERIES,E2697A,N2851A,N7009A,N5450B,1160A-65A,N7041A,N2819A,P6711,N280XA,P5210A,P6713,P6703B,N2778A,N2766A,N2887A,N2875A,E5396A,MV-23,N4863A,N2874A,N5451A,N7020A,N7032A,P6205,N2818A,N2789A,0960-2907,N2777A,54904-61622,0960-2908,E5385A,N4864A,10070D,N4840A,N2885A,N2873A,N2752A,N5440A,MX0106A,90000 SERIES,N2829A,N2817A,N2776A,N2805A,N4853A,E5394A,N4841A,N2884A,N2751A,N2872A,MX0109A,N5477A,N7010A,N7022A,N2828A,54850,N2787A,N2816A,N2804A,N4842A,N2870A-76A,N4854A,N2786A,E5383B,N2750A,N2871A,N5442A,N7021A,N7033A,E2613A,N2839A,9000A,N2848,N2827A,N2803A,E2678B,N4831A,N2870A,N4843A,N2797A,N2785A,N5443A,N7000A,N7024A,10073D,80000,DP0002A,10467-68701,N2838A,N2826A,N2802A,N2881A,E2643A,E2655C,N2796A,N2784A,N2893A,1134B,1146B,N5444A,N7023A,E2679B,DP0001A,P5205,1147B,1147A,N2801A,N2849A,N2825A,N4844A,N2783B,E2644A,N7026A,N2880A,N5380B,N2795A,P5205A,N2783L,P5210,1131B,N5445A,N7002A,E2668B,N2812A,N2848A,N2836A,N2824A,N4845A,N2891A,N2782B,N5381B,N2697A,1168B,1132B,10072A,N7001A,E2669B,MX0023A,1169B,N2823A,N4846A,TCP202,N4822A,N2835A,N5446A-006,N7004A,N5446A-005,N2781B,N5446A-004,N5446A-003,10077A,N5446A-002,N5447A,N5446A-001,90000 Q-SERIES,N2822A,N7003A,N2780B,E2675B,10 076C,1130B,N5448B,5959-9334,N2833A,N2821A,E5346A,N4836A,10085-68701,N2791A,E2676B,N7006A,01650-61609,N700XA,10075A,N5425B,5968-4632E,N5449A,N2832A,N4837A,N2832B,N2820A,E2677B,N7005A,N2790A,11447B,N2831B,10076C,N5426A,MX0100A,N7042 A,N2831A,N4838A,5090-4833,N2879A
【选型】Keysight(是德科技)Infiniium 示波器探头和附件选型指南(中文)
目录- 探头兼容性表 InfiniiMax 有源探头系统概述 有源端接适配器 InfiniiMode 有源探头 单端有源探头 通用差分有源探头 交流/直流电流探头 高灵敏度电流探头 通用无源探头 高压无源探头 混合信号示波器逻辑探头和附件 探测附件
型号- N2830A,8104A,P6241,N2830A-32A,P6243,E2614A,P6245,P6246,P6247,P6248,P6249,N5439A,N2744A T2A,N1022B,N4839A,N2878A,N27891A,E2695A,P6701B,P6250,P6251,54853B,E2615A,54853A,5063-2115,N2768A,N2877A,N2744A,90000X,DSO90254,90000Q,E2616A,L,S,V,DSO9254A,90000A,N2779A,N4829A,N2888A,N2876A,Z,DSO9404A,5063-2120,E2697A,DSO90000,N2851A,N5450B,N7300A,N2819A,N280XA,P6711,P5210A,P6713,5063-2137,P6703B,、N2821A,N2778A,N2887A,N2766A,5063-2135,N2875A,54846B,MV-23,N4863A,N2874A,N5451A,、N2820A,N7020A,54006A,P6205,N2818A,MSO9404A,N2789A,N2777A,0960-2907,0960-2908,N4864A,10070D,N4840A,90000-X,N2885A,N2752A,N2873A,N5440A,54845B,N2829A,N2817A,1130A-34A,N2776A,N2805A,N27181B,N4853A,N2800A-03A,DSO90604A,N4841A,N2884A,N2751A,N2872A,N5477A,N5441A,N7010A,N2828A,DSA90604A,N2787A,90000-Q,N27182B,N2816A,N2804A,N4842A,N2870A-76A,N4854A,N2786A,N2883A,N2750A,N2871A,N5442A,E2613A,86100D,N283L,DSO80000,N2848,N2827A,N2803A,N27183B,N2870A,N4831A,N4843A,N2797A,N2785A,N2882A,N5443A,N7000A,10073D,E2678A,DSA90404A,、N2876A,10467-68701,N2838A,DSA90254A,N2826A,N2802A,N2881A,E2643A,E2655C,N2796A,N2784A,N2893A,1134A,1146B,N5444A,N2783,E2679A,P5205,1147B,1147A,N2801A,N2849A,N 2 8 8 0 A,N4844A,N2825A,N2783B,E2644A,N2771B,5483XD,N2880A,N5380B,5483XB,N2795A,P5205A,1131A,N2783L,P5210,9000,E2668A,N5445A,N7002A,1168A,N2812A,N2800A,DSO90404,N2848A,N2836A,N4845A,N2824A,90008A,N5381A,N2782B,N2891A,01160-68701,N2697A,MSO9254A,1132A,E2669A,10072A,DSA80000,N7001A,1169A,DSO9104A,N4846A,N4822A,TCP202,N5446A-006,N5446A-005,N2781B,N5446A-004,N7000A-03A,N5446A-003,N5382A,10077A,1153A,1165A,N5446A-002,N5447A,1141A,N5446A-001,5063-2149,N2822A,5063-2147,5063-2140,5063-2143,N7003A,N7100A,E2675A,N2780B,1142A,1154A,1130A,MSO9104A,N2821A,N4836A,N7200A,E2676A,N2791A,N700XA,10075A,N5425A,N5449A,N2832A,N4837A,N2820A,E2677A,N2790A,10076B,10076C,N5426A,9064A,N2831A,N4838A,DSA90000,N2879A
差分探头适合测试高速差分信号,适合放大器测试,电源测试,适合虚地测试等应用
示波器差分探头示波器差分探头是示波器的一种测量探头。示波器差分探头用于探测相互作为参考而不是以接地作为参考的信号,以及在有较大直流偏置或其他共模信号(例如电源线噪声)时的弱信号。
示波器使用技巧——如何补偿示波器探头?
示波器探头的重要性示波器探头是示波器外部的电路器件,其作用是从被测电路中探测信号,当探头接入被测电路后,探头会成为测试电路的一部分,而探头和示波器相连接,探头又会成为示波器测量系统的一部分。所以探头的电路设计非常重要。由于探头中存在分布电容和分布电感,尤其在进行高频信号测量的时候会使信号的频率特性变差。
Keysight(是德科技) Infiniium DCA-X 86100D高带宽示波器主机和模块
型号- 11636B,R1282A,11636C,11742A-K01,N4871A,9300-1367,1150-7913,9300-1484,E2678A,83496BU,N5439A,86108,N1022B,83059A,83059B,83059C,N2802A,1134A,N5444A,E2679A,N1045A,5061-5311,N2801A,N1045A2,86118A-H01,9300-1308,N5380A,86101-60017,N9398C,N9398F,1131A,1250-1158,E2668A,N5445A,86115D,1168A,86100D-400,86100D-401,N2800A,85140A,N5381A,85140B,11742A,83480A,1132A,E2669A,86116C,N9398G,N1055A,1169A,N5382A,N1022A/B,85130-60010,N5447A,M8000,86105D,86105C,86100D-300,86117A,N1070A,86112A-HBW,N1055A2,E2675A,N9355CK01,N5440A,86100D DCA-X,9300-0980,1130A,N5448A,N1000-40008,86118A,85138B,85138A,81000,8490D,8493C,11901D,R1280A,E2676A,11901B,11901C,N5477A,N5441A,909D-301,11901A,86116C-IRC,N1081-4A,86100D-200,86100D-201,86100D-202,N490X,86107A,86100D-SIM,0960-2929,N4877A,N4910A,11900C,909D-011,E2677A,54754A1,11900A,11900B,N1012A OIF CEI,86100D-9FP,N1014A SFF-8431,86116C1,86116C2,86100D,N1019A,86100C,86100B,86100A,86112A,N1075A,86108B,86108A,83496B,N2803A
示波器采样率设置多少比较合适?
尼奎斯特采样定理规定,对于具有最大频率fMAX且带宽有限的信号,等距采样频率fS必须大于最大频率fMAX的两倍,这样才能唯一地重建信号而不会产生混叠。本文KEYSIGHT探讨了示波器采样率设置多少比较合适。
电子商城
现货市场
服务
提供电机的输出反电势波形测试、驱动芯片输入/输出波形测试服务,帮助您根据具体应用场景来选择适合的电机驱动芯片型号,确保电机驱动芯片能够与其他系统组件协同工作达到最佳效果。支持到场/视频直播测试,资深专家全程指导。
实验室地址: 成都 提交需求>
提供全面表征产品器件耗电特征及功耗波形、快速瞬态效应、电源优化、表征和仿真测试服务,使用直流电源分析仪测量精度达50µV,8nA,波形发生器带宽100kHz,输出功率300W,示波器200kHz,512 kpts
实验室地址: 深圳/苏州 提交需求>
登录 | 立即注册
提交评论