介绍芯片原子钟与铷原子钟的区别
在众多的时间测量设备中,芯片原子钟和铷原子钟是目前市场上备受欢迎的原子钟产品。那么,芯片原子钟与铷原子钟之间有什么区别呢?赛思作为拥有原子钟自研技术的时频企业,本文将从以下几个方面进行阐述,以供您参考。
图 1
1. 工作原理
铷原子钟是一种利用铷原子振荡器产生高稳定性的时间信号的原子钟。铷原子钟的工作原理是基于铷原子的基态能级之间的跃迁,通过测量铷原子发射或吸收光子的频率来计算时间。这种原子钟的精度非常高,可以达到每天误差不超过10-15秒。
而芯片原子钟则是一种将铷原子钟的原理集成到集成电路中的原子钟。芯片原子钟通过微电子技术实现铷原子振荡器的控制和检测,从而产生高精度的时间信号。与传统的铷原子钟相比,芯片原子钟具有体积小、功耗低、性能稳定等优点。
2. 结构特点
铷原子钟的结构相对简单,主要由铷原子发生器、振荡器、稳频电路和时标电路等部分组成。其中,铷原子发生器是铷原子钟的核心部件,负责产生稳定的铷离子束流;振荡器则是产生铷原子能级跃迁的关键部件;稳频电路用于保持振荡器的输出频率稳定;时标电路则是用来读取振荡器的频率并转化为时间信号。
芯片原子钟则是将上述各个部件集成到一块小小的芯片上,实现了高度集成化的设计。这使得芯片原子钟在体积和功耗上得到了极大的优化,同时也降低了故障率,提高了可靠性。
3. 应用领域
由于铷原子钟具有非常高的精度和稳定性,因此广泛应用于各种需要精确时间测量的领域,如导航系统、通信系统、实验室精密计量等。此外,由于芯片原子钟具有较高的集成度和较低的功耗,因此也逐渐进入了消费电子产品领域,如智能手机、平板电脑等。
总而言之,芯片原子钟和铷原子钟各有其优势。赛思基于市场需求,也研制了具备≤-95dBc/Hz@10Hz,≤-135dBc/Hz@1kHz的低相位噪声、秒稳优于5E-11的铷原子钟产品,及-80dBc/Hz@10Hz,-125dBc/Hz@1kHz的超低相位噪声、秒稳优于3E-10的芯片原子钟产品。
- |
- +1 赞 0
- 收藏
- 评论 0
本文由三年不鸣转载自赛思官网,原文标题为:芯片原子钟与铷原子钟的区别,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
相关推荐
详细介绍单北斗授时设备的优势
随着科技的不断发展,时间的精确测量已经成为了各个领域不可或缺的一部分。在众多的时间同步设备中,单北斗授时设备以其独特的优势,逐渐在各个行业中得到了广泛的应用。本文赛思将详细介绍单北斗授时设备的优势。
详解原子钟授时和网络授时的区别
在时间的宇宙里,精确度是一种追求。从古老的日晷到现代的原子钟,人类不断探索着更精细的时间测量方式。而在现代社会中,原子钟授时和网络授时作为两种主流的时间同步手段,它们各自承担着重要的角色。本文赛思旨在深入探讨这两种技术的特点、区别以及它们在我们的生活中扮演的角色,带您一探究竟。
算力的尽头是电力?赛思NTP时间服务器助力龙源电力筑牢电力能源根基!
随着社会数智化程度的加深,各行业高精度时间同步需求剧增。作为时间同步领域领军企业,赛思以市场需求为牵引,自研100余款时频产品,覆盖10条产品线,构建了从时频元器件到时频整机设备、网管系统的完备产品体系。
赛思(Saisi)晶振/谐振器/振荡器/原子钟选型指南
描述- 浙江赛思电子科技有限公司是一家专注于研制高性能时钟芯片、晶振、原子钟、时钟服务器、时钟模块及大型时空信息管理的综合时频解决方案的国内TOP级时频科技企业。
型号- T2016,T3225,SW6035,VC3225,R2520,D2020,T0705,TF2012,SW5032,SW7050,T2520,LSPXO3225,QT55,SW2520,O3838,R2016,PSPXO3225,T5032,PSPXO2016,O5050,O2020,O4560,TF1610,R1612,SW3225,QT45,SW2016,O3627,O1409,O9282,QT40G,D6565,SPXO7050,SPXO2520,49B,SPXO5032,O2522,O2525,SW1210,QT31,SW1612,49S,O0907,O0705,T1409,SPXO2016,SPXO3225,D3627,TF3215
解析时钟缓冲器与时钟发生器的区别与特性
在电子设备和通信系统中,时钟信号是至关重要的元素。它为我们提供了一个参考点,让我们可以测量时间、同步设备,并进行精确的时间间隔控制。在时钟生成和处理过程中,有两个重要的角色:时钟缓冲器和时钟发生器。尽管它们的名字相似,但它们的功能和工作方式却大相径庭。本文赛思将详细介绍这两种器件的区别与特性。
解析校时服务器的校时方式:探讨其在确保时间同步中的重要作用
在当今信息技术飞速发展的时代,时间的精准对于金融交易、通信网络、科学研究等许多领域来说至关重要。一个微小的时间误差可能会引发不可预测的后果,而校时服务器作为精确时间的守护者,其重要性不言而喻。本文赛思将详细介绍校时服务器的校时方式,并探讨其在确保时间同步中的重要作用。
深入探讨原子钟的基本原理、优越性以及应用与影响
从全球定位系统(GPS)到科学实验,从商业交易到日常生活,时间测量在许多领域都发挥着至关重要的作用。而这种对时间的精确测量,主要依靠一种被称为原子钟的设备。原子钟是如何工作的?为什么它能提供如此高度精确的时间测量?本文赛思将深入探讨这个问题。
原子钟相较于晶振有哪些特殊优势?
随着科技的不断进步,精确时间测量在科学研究和工业应用中变得越来越重要。晶振作为传统的频率标准源,一直被广泛使用于各种电子设备中。然而,随着对时间精度要求的日益提高,原子钟凭借其独特的优势,逐渐成为了高精度时间频率计量的新宠。本文赛思将探讨原子钟相较于晶振的特殊优势,并阐述为何在高精尖领域中,原子钟成为了不可或缺的存在。
时钟芯片的精度范围介绍
时钟芯片,又称为实时时钟(RTC)芯片,是一种集成了计时功能的微控制器。它们可以实时更新系统时钟,并提供基本的时间显示功能。时钟芯片广泛应用于各种电子设备,如计算机、手机、平板电视等,以确保这些设备能够准确地显示时间。本文赛思将为您详细介绍时钟芯片的精度范围。
选择原子钟时如何确定其精度?
在科技发展的今天,原子钟已经成为了精确计时的基石。原子钟的精度对于科学研究、时间同步和精密测量等领域具有重要意义。那么,在选择原子钟时,我们应该如何确定其精度呢?本文赛思将从以下几个方面为您解答这个问题。
一文了解铷钟的基本原理、特点及应用领域
铷原子钟(简称铷钟)是一种高精度的时间计量仪器,它利用铷原子的电磁波谱线作为频率标准来精确计时。铷钟主要由铷量子部分和压控晶体振荡器组成,通过倍频和频率合成等技术,实现对时间的高精度测量。本文赛思将为您介绍铷钟的基本原理、特点及应用领域。
解析芯片原子钟:普通原子钟的革新力
在科技日新月异的今天,我们已经习惯了使用各种精确的测量设备来衡量时间。其中,原子钟因其超高的精度和稳定性,一直被广泛应用于时间计量领域。然而,随着科技的发展,一种新的原子钟——芯片原子钟,正在逐渐崭露头角,它以其独特的优势,正在挑战和超越传统的原子钟。本文中赛思来给大家介绍芯片原子钟。
一文介绍原子钟的优缺点
原子钟,也被称为原子振荡器,是利用原子的稳定振荡来测量时间的一种精密仪器。自20世纪初以来,原子钟已经取代了传统的机械式时钟,成为精确度最高的时间测量工具。然而,尽管原子钟具有许多优点,但它也有一些明显的缺点。本文赛思将详细介绍原子钟的优点和缺点。
浅析原子钟对于科技发展的重要意义
在探讨现代科技发展的历程中,原子钟的作用不可忽视。作为一种基于原子或分子的电子跃迁现象而制成的高精度时间频率基准,原子钟不仅是计量学领域的一个里程碑,也是推动科技进步的重要工具。本文中赛思来为大家浅析原子钟对于科技发展的重要意义,希望对各位工程师朋友有所帮助。
电子商城
服务
提供蓝牙BLE芯片协议、蓝牙模块、蓝牙成品测试认证服务;测试内容分Host主机层,Controller控制器层,Profile应用层测试。支持到场/视频直播测试,资深专家全程指导。
实验室地址: 深圳 提交需求>
可定制导热胶的导热系数1~6W、粘度范围3000~250000cps、固化方式可加热、仅室温、可UV;施胶方式:点胶机、手工、喷胶、转印;支持颜色、硬度、固化时间等参数的个性化定制。
最小起订量: 1支 提交需求>
登录 | 立即注册
提交评论