什么?MCU APM32F072_RTC会恢复默认值?
1 问题
最近有一个小伙伴反馈他写的程序,RTC的计数值会在断电后重新上电(Vbat未断电)后,APM32F072的RTC计数会恢复默认值。
这是怎么回事呢?本文就解决该问题进行记录,与大家分享。
2 RTC基础
2.1 基础知识
首先先回顾一下APM32F072的RTC功能。
RTC全称是Real Time Clock即实时时钟,这个模块在一般的MCU上都存在。APM32F072上的RTC提供了我们用来做一个基本的定时,一般我们设置它的时基是1S。说到这里,没有接触过的小伙伴也应该知道了RTC是用来干啥的了。
对日历功能,我们一般会设置一个开始日期(或者在网络上同步),然后程序不断的一秒秒的计时,若干时间后,我们设备若是在离线情况下也能通过这个模块读取到当前的时间。
同样的,我们查阅APM32F072的手册,还能发现它有“闹钟”功能。“闹钟”这个很好理解,无非就是设置一个时间点,RTC计数到这个时间点了就产生中断告诉系统。
除了以上功能,它还有很多好玩的功能,大家可以去看他们手册。
2.2 RTC时钟来源
APM32F072的时钟来源有:LSECLK、HSECLK、LSICLK。一般而言,我们会使用LSECLK作为它的时钟来源。
为啥呢?
首先我们看看LSICLK,这个是MCU的内部时钟,它由于是内部的RC振荡器,这个基础决定了它:
1.精度不太高。
2. 不同的MCU有一定的差异,即一致性较差。
3. 受温度影响较大,比如说温度升高,可能频率就升高。
在一些要求精度的场合,LSICLK就会被pass。
其次我们再来看看HSECLK,它是外部高速时钟,一般是晶振。这个精度就高了吧?是的,它精度高了,但是我们RTC的一些应用场合是在低功耗模式下的。MCU在低功耗模式下HSE振荡器是会被关闭的,这个时候RTC就不能正常计数了,可能与我们的初衷相悖。所以我们这个时候就使用LSECLK,做RTC的时钟源。
当然,不同场合选择的时钟源不一样,选择的一定是适合的即可。
2.3 RTC的电源域
为保证MCU在低功耗情况下能够正常进行RTC计数,APM32F072单独给其设计了一个电源域Vbat,只要该电源域保持相应的电压,RTC就能持续计数下去。
3 异常分析
讲解完RTC的基础知识后我们回过头,看看出现异常的情形再现。程序运行在APM32F072MINI板上,通过拔插J6/J8(蓝色的)跳线帽模拟对MCU的VDD及VDDA电源的控制。J9(绿色)跳线帽始终保持连接,即Vbat电源是持续提供的。
异常现象:
1.拔插J6/J8(蓝色的)跳线帽模拟对MCU的VDD及VDDA电源的控制。
2. 每次RTC时间都会恢复初值。
3.1 排查硬件
我们先考虑硬件上的问题:RTC在蓝色跳线帽拔插后还能不能正常工作?
由于J9(绿色)跳线帽始终保持连接,我们通过“RTC的电源域”分析RTC是正常供电的,它的计数理论上是不会被影响的。
那么我们回过头来:拔插J6/J8(蓝色的)跳线帽模拟对MCU的VDD及VDDA电源的控制,影响了什么?
由于MCU的VDD及VDDA重新进行了上下电,我们MCU的程序依赖于HSI/HSE在断电过程中,程序肯定是停止了,而上电后MCU程序进行了复位运行。
好的,硬件上没有影响到RTC的计数,同时我们了解了一个讯息,拔插J6/J8(蓝色的)跳线帽会使得MCU程序重新复位运行。那么我们判断异常问题是否是来自于程序复位运行后?
3.2 查看源码
我们这里直接对其main 函数进行分析。
int main(void)
{
uint8_t Presec;
uint32_t data;
RTC_DATE_T DateStruct;
RTC_TIME_T TimeStruct;
APM_MINI_LEDInit(LED2);
APM_MINI_COMInit(COM1);
/* RTC Reset */
RTC_Init();
RTC_Reset();
RTC_Init();
/* RTC Enable Init */
RTC_EnableInit();
RTC_ConfigDateStructInit(&DateStruct);
/* First time Init */
if ((RTC_ReadBackup(RTC_BAKP_DATA4) && 0X01) == RESET)
{
/* Init Date 20/8/22/6 */
DateStruct.year = 20;
DateStruct.month = 8;
DateStruct.date = 22;
DateStruct.weekday = 6;
RTC_ConfigDate(RTC_FORMAT_BIN, &DateStruct);
Delay();
RTC_WriteBackup(RTC_BAKP_DATA1, RTC->DATE);
Delay();
RTC_WriteBackup(RTC_BAKP_DATA4, 0X01);
}
/* First time Init */
if ((RTC_ReadBackup(RTC_BAKP_DATA3) && 0X01) == RESET)
{
TimeStruct.H12 = 12;
TimeStruct.hours = 23;
TimeStruct.minutes = 59;
TimeStruct.seconds = 50;
RTC_ConfigTime(RTC_FORMAT_BIN, &TimeStruct);
Delay();
RTC_WriteBackup(RTC_BAKP_DATA0, RTC->TIME);
Delay();
RTC_WriteBackup(RTC_BAKP_DATA3, 0X01);
}
/* Wait is neccessary */
Delay();
/* RTC Disable Init */
RTC_DisableInit();
for (;;)
{
/* Read last Time */
Presec = TimeStruct.seconds;
/* Read time */
RTC_ReadTime(RTC_FORMAT_BIN, &TimeStruct);
/* If pass 1 second */
if (Presec != TimeStruct.seconds)
{
APM_MINI_LEDToggle(LED2);
/* Read Date */
RTC_ReadDate(RTC_FORMAT_BIN, &DateStruct);
/* Write DATE information to Backup */
RTC_WriteBackup(RTC_BAKP_DATA1, RTC->DATE);
printf(" date = 20%d / %d / %d / %d ",
DateStruct.year, DateStruct.month, DateStruct.date, DateStruct.weekday);
/* Write TIME information to Backup */
RTC_WriteBackup(RTC_BAKP_DATA0, RTC->TIME);
printf(" time : %02d:%02d:%02d \r\n",
(TimeStruct.hours), (TimeStruct.minutes), (TimeStruct.seconds));
}
}
}
我们这里可以看到,RTC是main函数一旦运行,就初始化一次的。而RTC的时钟设置是会去判断备份域的标志才进行的。
好的相信到这里很多小伙伴都看出来问题了。但这里容我卖个关子,因为很多问题并不是这样子浅显的。
我们这里使用串口打印我们main函数执行流程。
1.在初始化RTC前,加入“printf("Init RTC ...\r\n");”
2. 在设置日期前,加入“printf("Init Date 20/8/22/6 \r\n");”
3. 在设置时间前,加入“printf("Init 23:59:50\r\n");”
然后我们编译程序下载至板子后重新给电到MCU(所有电源需要关闭一次,因为备份域的数据只有Vbat断电后才能复位)。接着我们开始刚刚的异常复现的操作。
我们发现RTC的初始化在每次模拟上下电的过程中都被初始化了一次,但时间配置由于备份域的标志一直存在,只会在最初的时候初始化了一次。
所以问题找到:由于每次上下电RTC都会进行初始化,所以才会发生“恢复默认值”的现象。
4 解决问题
问题原因我们已经找到,那我们怎么解决呢?
其实很简单:只需初次上电的时候RTC进行初始化,在**拔插J6/J8(蓝色的)跳线帽模拟对MCU的VDD及VDDA电源的控制**引起的上电复位运行程序时不在初始化RTC即可。修改方法就是RTC进行初始化的代码放到“设置日期”的分支里面即可。
最后效果:
5 总结
本贴就记录一位小伙伴的小bug进行的一个分享,其实对于一些bug,我们也是有相关的问题查找思路:
1. 对待该模块要熟悉,熟悉它的硬件设计。如RTC这个问题要熟悉其工作的基本原理,供电的基本原理。
2. 首先排查硬件问题,由于嵌入式软件是在硬件的基础上运行的,若地基有异常,软件无论如何调整,都有可能得不到想要的结果。
3. 其次排查软件设计流程,软件的设计流程看看是否符合我们的预期。
4. 最后排查模块的初始化流程,有一些小问题就是我们的模块初始化不正确所导致的。
- |
- +1 赞 0
- 收藏
- 评论 0
本文由拾一转载自极海半导体 微信公众号,原文标题为:APM32芯得 EP.30 | 什么?APM32F072_RTC会恢复默认值?,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
相关推荐
【经验】如何在JFLASH中添加极海半导体Geehy APM32系列MCU
本文主要介绍极海半导体MCU产品如何使用第三方Segger公司的JFLASH配合J-Link仿真器对指定型号MCU的Flash进行擦除、写入及读取操作的目的。
【经验】APM32F4 MCU在RT-Thread系统上添加以太网驱动和使用LwIP网络组件的方法
本文详细介绍了如何将极海半导体APM32F4 MCU在RT-Thread系统上添加以太网驱动和使用LwIP网络组件,其他APM32带有以太网控制器的MCU,在RT-Thread使用LwIP网络功能也是大同小异的,按照这个过程基本都可以把网络功能应用起来。
APM32芯得 | 基于极海APM32E103系列MCU的SPI转CAN芯片MCP2515移植测试
极海半导体APM32E103系列MCU支持CAN协议2.0A和2.0B,通信波特率最大为1Mbit/s,并且拥有双CAN接口,能适应更多的应用场合。将杜邦线按照引脚配置,接好线后仿真就能测试回环模式下收发数据了。可以看到断点打到接收部分,可以接收到CAN数据,与发送的数据一致。
tandby模式下,如何唤醒MCU APM32的RTC与WKUP?
APM32F103系列低功耗模式有三种:睡眠模式、停止模式和待机模式。通过关闭内核、时钟源、设置调压器来降低功耗。本文极海半导体解析了APM32的tandby模式下的RTC唤醒与WKUP唤醒功能如何实现。
极海半导体32位MCU-M0选型表
极海半导体的APM32系列是基于Arm® Cortex®-M0+/M3/M4内核的优质国产32位通用MCU,具有低功耗、高性能、高集成度以及快速移植等特性。凭借优异的系统性能、丰富的协处理功能以及灵活的使用体验,有助于用户缩短产品设计时间、降低开发成本、实现性能最优化。
产品型号
|
品类
|
内核
|
Frequency(MHz)
|
FLASH(KB)
|
SRAM(KB)
|
I/Os
|
Vmin(V)
|
Vmax(V)
|
GPTMR(16bit)
|
GP TMR(32bit)
|
Advanced TMR(16bit)
|
Basic TMR
|
Systick(24bit)
|
ADC 12-bit Cell
|
ADC 12-bit channels
|
DAC 12-bit Cell
|
DAC 12-bit channels
|
Analog Comparator
|
TSC (Channels)
|
SPI
|
I2S
|
I2C
|
U(S)ART
|
CAN
|
SDIO
|
USB Device
|
Package
|
对照型号
|
APM32F072V8T6
|
32位MCU
|
ARM Cortex-M0
|
48MHz
|
64KB
|
16KB
|
87
|
2V
|
3.6V
|
5
|
1
|
1
|
2
|
1
|
1
|
16
|
1
|
2
|
2
|
24
|
2
|
2
|
2
|
4
|
1
|
0
|
1
|
LQFP 100
|
-
|
选型表 - 极海半导体 立即选型
还可以这样玩?极海半导体APM32F411系列MCU与pyocd的火花
前段时间笔者学习了一下如何使用pyocd配合APM32F411VCTINY板在命令行下给它进行各种骚操作,在使用一段时间后就想着:pyocd是基于python的,那是不是也可以使用python脚本+pyocd使用起来呢?本文中极海半导体与大家分享能够自动化完成重复操作的设计经验。
【应用】极海半导体MCU APM32F103系列用于HMI人机界面,可满足HMI功耗调整、蓝牙通信等需求
本文推荐采用极海半导体推出的APM32F103系列MCU作为HMI人机界面的主控,最高96MHz工作频率,FLASH 256K,SRAM 64K,支持FPU单元;资源丰富,有CRC/RTC/DMA通道,两个DMA;通信接口丰富。
【经验】极海MCU APM32F103 IAP的实现方式
拿到了一块APM32F103VC的MINI开发板,在学习了一段时间后发现其有非常丰富的外设资源,主频能达到96Mhz。最近在项目中使用到了IAP(In Application Programming)功能,特来评估一下APM32F103的IAP实现方式。
极海联亮相2024全球MCU及嵌入式生态发展大会,展出新技术和产品并发表演讲
2024年7月25日,2024全球MCU及嵌入式生态发展大会在深圳君悦酒店举行,由AspenCore主办。极海作为特邀嘉宾在主论坛进行演讲,并展出新技术和产品,包括搭载Arm Cortex M52内核且采用Helium技术的G32R5系列实时控制MCU和针对电机市场的栅极驱动器与APM32M3514系列SoC等新品。
极海半导体32位MCU-M3选型表
极海半导体的APM32系列是基于Arm® Cortex®-M0+/M3/M4内核的优质国产32位通用MCU,具有低功耗、高性能、高集成度以及快速移植等特性。凭借优异的系统性能、丰富的协处理功能以及灵活的使用体验,有助于用户缩短产品设计时间、降低开发成本、实现性能最优化。
产品型号
|
品类
|
内核
|
Frequency(MHz)
|
FLASH(KB)
|
SRAM(KB)
|
SDRAM
|
FPU
|
I/Os
|
Vmin(V)
|
Vmax(V)
|
GPTMR(16bit)
|
GP TMR(32bit)
|
Advanced TMR(16bit)
|
Basic TMR
|
Systick(24bit)
|
ADC 12-bit Cell
|
ADC 12-bit channels
|
DAC 12-bit Cell
|
DAC 12-bit channels
|
Analog Comparator
|
EMMC
|
SPI
|
I2S
|
I2C
|
U(S)ART
|
CAN
|
SDIO
|
Package
|
对照型号
|
APM32E103CET6
|
32位MCU
|
ARM Cortex-M3
|
120MHz
|
512KB
|
128KB
|
0
|
1
|
37
|
2V
|
3.6V
|
4
|
0
|
1
|
2
|
1
|
2
|
10
|
2
|
2
|
0
|
0
|
3
|
2
|
2
|
3
|
2
|
0
|
LQFP48
|
STM32F103RET6
|
选型表 - 极海半导体 立即选型
【应用】国产工业级高性能MCU APM32F407VGT6用于PLC工控板,主频168MHz,通信外设丰富
某客户主要做各种工业自动控制系统装置,其中一款国产PLC工控板主控要更换成国产物料,推荐极海工业级高性能MCU APM32F407系列,主频高达168MHz、通信外设资源丰富,工作温度范围-40℃到+85℃。
APM32F411xCXE ARM®Cortex®-M4F核基32位MCU用户手册
极海半导体 - 基于ARM®CORTEX®-M4F内核的32位MCU,MICRO-CONTROLLER UNIT,ARM® CORTEX®-M4F CORE-BASED 32-BIT MCU,微控制器单元,MCU,APM32,APM32F411XCXE SERIES,APM32F411XCXE
极海半导体APM32F407系列MCU支持国密算法,助力国产安全可控,适用于新能源等领域
极海推出的APM32F407系列MCU,结合当前环境要求,设计出了支持国密算法(SM2,SM3,SM4)的IP, 符合国家密码管理局认定和公布的密码算法标准及其应用规范,并凭借显著的性能优势,已应用至新能源、工业控制、医疗设备等众多领域。
【视频】极海APM32F407xG系列MCU培训
极海半导体 - MCU,APM32F405VGT6,APM32F091VCT6,APM32F051K6T6,APM32F091CCT6,APM32F003F6P6,APM32F051K8T6,APM32F103CCT6,APM32F405RGT6,APM32F003F6P7,APM32F103VET6,APM32E103VCT6,APM32F051C8T6,APM32F103RCT6,APM32E103ZET6,APM32F103RCT7,APM32F103VCT6,APM32F103ZET6,APM32E103RCT6,APM32E103VET6,APM32F415RGT6,APM32F407RGT6,APM32F030RCT6,APM32F091RCT6,APM32F003F6U7,APM32E103CET6,APM32F407RET6,APM32F407VGT6,APM32F415VGT6,APM32F407VET6,APM32F051K8U6,APM32F051C8U6,APM32F103TBU6,APM32F417VGT6,APM32F103RET6,APM32F051R8T6,APM32F417ZGT6,APM32F405ZGT6,APM32F051K6U6,APM32F030CCT6,APM32F030C8T6,APM32F103CBT6,APM32F103C8T6,APM32F030K6T6,APM32F030R8T6,APM32F103VBT6,APM32F103RBT6,APM32F407ZET6,APM32F407ZGT6,APM32F072VBT6,APM32F072RBT6,APM32F072RBT7,APM32F415ZGT6,APM32F407IET6,APM32F072CBT6,APM32F407IGT6,APM32F030K6U6,APM32E103RET6,直流充电桩,变频器,按摩椅,交流充电桩,空调,咖啡机,安防摄像,扫地机,冰箱,人机界面,网关,吸尘器,可编程逻辑控制器,油烟机,便携医疗,榨汁机,智能电表,储能,仪表盘,步进电机驱动器,HMI,BMS,伺服控制器,楼宇控制,逆变器,智能指纹锁
APM32F103xCXDXE基于ARM®Cortex®-M3的32位MCU用户手册
本手册详细介绍了APM32F103xCxDxE系列基于Arm® Cortex®-M3内核的32位微控制器(MCU)的系统架构、内存和外设。内容包括系统架构概述、内存映射、启动配置、Flash存储器、外部存储器控制器(EMMC)、外部内存控制器(SMC)、动态内存控制器(DMC)、复位和时钟管理(RCM)、电源管理单元(PMU)、备份寄存器(BAKPR)、嵌套向量中断控制器(NVIC)、外部中断/事件控制器(EINT)、直接内存访问(DMA)、调试MCU(DBGMCU)、通用输入/输出引脚(GPIO)、多功能输入/输出引脚(AFIO)、定时器、看门狗定时器(WDT)、实时时钟(RTC)、通用同步/异步收发器(USART)、内部集成电路接口(I2C)、串行外设接口/片上音频接口(SPI/I2S)、控制器局域网(CAN)、安全数字输入/输出接口(SDIO)、全速USB设备接口(USBD)、模数转换器(ADC)、数模转换器(DAC)、循环冗余校验计算单元(CRC)、浮点单元(FPU)以及芯片电子签名等。
极海半导体 - ARM® CORTEX® -M3 BASED 32-BIT MCU,基于ARM®CORTEX®-M3的32位MCU,微型控制器,MICRO-CONTROLLER,MCU,APM32F103XCXDXE,APM32F103XDXE,APM32F103XCXDXE SERIES,APM32F103XC,APM32F
电子商城
现货市场
服务
可定制显示屏的尺寸0.96”~15.6”,分辨率80*160~3840*2160,TN/IPS视角,支持RGB、MCU、SPI、MIPI、LVDS、HDMI接口,配套定制玻璃、背光、FPCA/PCBA。
最小起订量: 1000 提交需求>
拥有IC烧录机20余款,100余台设备,可以烧录各种封装的IC;可烧录MCU、FLASH、EMMC、NAND FLASH、EPROM等各类型芯片,支持WIFI/BT模组PCBA烧录、测试。
最小起订量: 1 提交需求>
登录 | 立即注册
提交评论