SiC MOSFET损耗计算方法:通过波形的线性近似分割来计算损耗的方法
本文的关键要点
・可以在线性近似有效范围内对所测得的波形进行分割,并使用示例公式进行损耗的近似计算。
・MOSFET开关工作时的总功率损耗是开关损耗和导通损耗之和。
本文ROHM将介绍根据在上一篇文章中测得的开关波形,使用线性近似法来计算功率损耗的方法。
・通过波形的线性近似分割来计算损耗的方法
・根据测得波形计算功率损耗示例
・各种波形的开关损耗计算示例
・各种波形的导通损耗计算示例
SiC MOSFET:通过波形的线性近似分割来计算损耗的方法
通过在线性近似有效范围内对所测得的波形进行分割,可以计算出功率损耗。
导通和关断区间的开关损耗
首先,计算开通和关断时间内消耗的功率损耗Pton和Ptoff。波形使用图2中的示例波形。功率损耗使用表1中的近似公式来计算。由于计算公式会因波形的形状而有所不同,因此请选择接近测得波形的近似公式。
在图2的波形示例中,开通时的波形被分割为两部分,前半部分(ton1)使用表1中的例2。另外,使用公式ID1≔0作为条件。后半部分(ton2)使用例3中的公式VDS2≔0。
在图2中,会因MOSFET的导通电阻和ID而产生电压VDS2(on),但如果该电压远低于VDS的High电压,就可以视其为零。综上所述,可以使用下面的公式(1)来近似计算开通时的功率损耗。
同样,将关断时的波形也分为两部分,前半部分(toff1)使用表1的例1中的公式VDS1≔0,后半部分使用(toff2)例8中的公式ID2≔0。在图2中,由于前述的原因,会产生电压VDS1(off),但如果该电压远低于VDS的High电压,则将其按“零”处理。这样,就可以使用下面的公式(2)来近似计算关断时的功率损耗。
导通期间的功率损耗
接下来,我们来计算导通期间消耗的功率损耗。图4是用来计算导通损耗的波形示例。由于在TON区间MOSFET是导通的,因此VDS是MOSFET导通电阻和ID的乘积。有关导通电阻的值,请参阅技术规格书。需要从表2中选择接近该波形形状的例子并使用其近似公式来计算功率损耗。
在本示例中,我们使用表2中的例1。MOSFET导通期间的导通损耗可以用下面的公式(3)来计算。
MOSFET关断时的功率损耗在图4中位于TOFF区间,由于MOSFET关断时的ID足够小,因此将功率损耗视为零。
总损耗
如公式(4)所示,MOSFET开关工作时的总功率损耗为此前计算出的开关损耗和导通损耗之和。
需要注意的是,表1和表2中的每个例子都有“参见附录”的注释,在附录中有每个例子的详细计算示例。各计算示例将会在后续的“各种波形的开关损耗计算示例”和“各种波形的导通损耗计算示例”中出现。
【资料下载】SiC功率元器件基础
本资料介绍了SiC的物理性质和优点,并通过与Si元器件的比较介绍了SiC肖特基势垒二极管和SiC MOSFET的特点及使用方法上的不同,还介绍了集诸多优点于一身的全SiC模块。
- |
- +1 赞 0
- 收藏
- 评论 0
本文由walkonair转载自ROHM官网,原文标题为:SiC MOSFET:通过波形的线性近似分割来计算损耗的方法…,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
相关推荐
SiC MOSFET损耗计算方法:开关波形的测量方法
关于根据开关波形计算功率损耗的方法,本文中ROHM将为大家介绍SiC MOSFET开关波形的测量方法。近年来,一些示波器已经具备可以自动计算并显示所观测波形的功率损耗的功能,但如果没有该功能,就需要通过测得的波形来计算损耗了。为此,需要了解具体的测量方法和波形。
在EV应用中使用第4代SiC MOSFET的效果:装入牵引逆变器实施模拟行驶试验
本文将介绍牵引逆变器的基本工作和在EV中的评估系统(电机试验台的测试环境)。然后使用其测试结果,按照乘用车油耗测试方法WTLC实施模拟行驶仿真,并通过示例来了解使用第4代SiC MOSFET改善电耗的效果。
【技术】利用500V输入7kW降压型DC-DC转换器的实机验证罗姆第4代SiC MOSFET开关损耗较小特征
罗姆发布了第4代SiC MOSFET,是第3代SiC MOSFET的沟槽栅结构进一步演进,将导通电阻降低约40%,开关损失降低约50%。在本文中,使用第4代1200V/36mΩ的SiC分立元器件的500V输入7kW输出的降压型DC-DC转换器的实机验证,确认了其有用性,特此报告。
ROHM(罗姆) SiC(碳化硅)MOSFET选型指南(中文)
描述- SiC MOSFET原理上在开关过程中不会产生拖尾尾电流,可高速运行且开关损耗低。低导通电阻和小型芯片尺寸造就较低的电容和栅极电荷。此外,SiC还具有如导通电阻增加量很小的优异的材料属性,并且有比导通电阻可能随着温度的升高而上升2倍以上的硅(Si)器件更优异的封装微型化和节能的优点。
型号- SCT3160KL,SCT4062KR,SCT3030KLHR,SCT4013DE,SCT3080AW7,SCT2450KE,SCT3160KW7,SCT2H12NZ,SCT4062KW7HR,SCT2450KEHR,SCT4013DR,SCT3060ALHR,SCT3040KRHR,SCT3060ARHR,SCT3040KLHR,SCT4036KEHR,SCT4045DRHR,SCT3022KLHR,SCT2160KE,SCT3080KW7,SCT3017ALHR,SCT3022AL,SCT3080ALHR,SCT3060AR,SCT3105KLHR,SCT4036KR,SCT3060AL,SCT4026DEHR,SCT4062KRHR,SCT3040KR,SCT2080KE,SCT3080KR,SCT3105KRHR,SCT3120AL,SCT4013DW7,SCT3030KL,SCT4062KWAHR,SCT4062KE,SCT3080ARHR,SCT4036KW7,SCT2280KEHR,SCT3120ALHR,SCT2280KE,SCT4062KWA,SCT3030AR,SCT3030AL,SCT3030AW7,SCT4036KRHR,SCT4045DEHR,SCT3120AW7,SCT3040KL,SCT3105KW7,SCT2080KEHR,SCT4018KW7,SCT4045DWA,SCT3080KL,SCT3030ALHR,SCT4062KW7,SCT3040KW7,SCT3022ALHR,SCT3030ARHR,SCT4045DW7,SCT3017AL,SCT4036KE,SCT4018KE,SCT4045DE,SCT4026DW7,SCT4062KEHR,SCT3080AR,SCT4026DW7HR,SCT4026DE,SCT4026DWA,SCT3160KLHR,SCT3080AL,SCT4045DW7HR,SCT4045DR,SCT2160KEHR,SCT3022KL,SCT4018KR,SCT4026DR,SCT4045DWAHR,SCT3105KL,SCT3160KW7HR,SCT3105KR,SCT3080KLHR,SCT3060AW7,SCT4026DRHR,SCT3080KRHR,SCT4026DWAHR
【经验】以SIC MOSFET SCT3040KR为例说明SiC MOS应用中Vds关断尖峰的应对策略
在SiC MOS应用中,通常在mos关断过程中存在较大的Vds尖峰,主要原因在Turn ON 时流过的电流的能量储存在线路和基板布线的寄生电感中,并与开关元件的寄生电容共振所产生的。本文将以ROHM SiC MOSFET SCT3040KR为例说明SiC MOS应用中Vds关断尖峰的应对策略。
SCS2xxAN(650V) SCS2xxKN(1,200V) 宽爬电距离封装SiC肖特基势垒二极管
描述- ROHM公司推出新型SiC肖特基势垒二极管,采用小型表贴封装,实现宽爬电距离,适用于xEV系统电压提升。产品具有低开关损耗,有助于降低设备功耗。产品包括650V和1,200V两种电压等级,适用于车载和工业设备。
型号- SCS310AM为10A,SCS2XXAN,SCS220ANHR,SCS212ANHR,SCS205KNHR,SCS2XXKNHR,SCS2XXKN,SCS210KNHR,SCS220KNHR,SCS215ANHR,SCS210ANHR,SCS2XXANHR,SCS230ANHR
ROHM(罗姆)SiC(碳化硅)MOSFET选型指南(英文)
目录- SiC MOSFETs
型号- SCT3160KL,SCT4062KR,SCT3030KLHR,SCT4013DE,SCT3080AW7,SCT2450KE,SCT3160KW7,SCT2H12NZ,SCT4062KW7HR,SCT2450KEHR,SCT4013DR,SCT3060ALHR,SCT3040KLHR,SCT4036KEHR,SCT4045DRHR,SCT3022KLHR,SCT2160KE,SCT3080KW7,SCT3017ALHR,SCT3022AL,SCT3080ALHR,SCT3060AR,SCT3105KLHR,SCT4036KR,SCT3060AL,SCT4026DEHR,SCT4062KRHR,SCT3040KR,SCT2080KE,SCT3080KR,SCT3120AL,SCT4013DW7,SCT3030KL,SCT4062KE,SCT4036KW7,SCT2280KEHR,SCT2280KE,SCT3030AR,SCT3030AL,SCT3030AW7,SCT4036KRHR,SCT4045DEHR,SCT3120AW7,SCT3040KL,SCT3105KW7,SCT2080KEHR,SCT4018KW7,SCT3080KL,SCT3030ALHR,SCT4062KW7,SCT3040KW7,SCT3022ALHR,SCT4045DW7,SCT3017AL,SCT4036KE,SCT4018KE,SCT4045DE,SCT4026DW7,SCT4062KEHR,SCT3080AR,SCT4026DW7HR,SCT4026DE,SCT4036KW7HR,SCT3080AL,SCT4045DW7HR,SCT4045DR,SCT2160KEHR,SCT3022KL,SCT4018KR,SCT4026DR,SCT3105KL,SCT3105KR,SCT3080KLHR,SCT3060AW7,SCT4026DRHR
ROHM提供支持电力电子仿真工具PSIM™的第4代SiC MOSFET仿真模型
全球知名半导体制造商ROHM(总部位于日本京都市)开始提供支持电力电子仿真工具PSIM™的第4代SiC MOSFET仿真模型。该模型可在Altair® US公司开发的电力电子和电机控制用的电路仿真工具PSIM™中使用。设计人员可从ROHM官网下载模型文件,轻松进行系统级评估。这一进展使得在更广泛的产业领域中进行高效设计和评估成为可能,并能进一步推动功率元器件的使用。
【元件】ROHM新推支持更高电压xEV系统的SiC肖特基势垒二极管,确保最小5.1mm爬电距离
ROHM开发出引脚间爬电距离*1更长、绝缘电阻更高的表面贴装型SiC肖特基势垒二极管(SBD)。新产品去除了以往封装底部的中心引脚,采用了ROHM原创的封装形状,将爬电距离延长至最小5.1mm,约为普通产品的1.3倍。通过确保更长的爬电距离,可以抑制引脚之间的漏电起痕(沿面放电),因此在高电压应用中将器件贴装在电路板上时,无需通过树脂灌封进行绝缘处理。
罗姆第4代SiC MOSFET裸芯片批量应用于吉利集团电动汽车品牌“极氪”3种主力车型
日前,搭载了罗姆第4代SiC MOSFET裸芯片的功率模块成功应用于“极氪”电动汽车3种车型的主机逆变器上,有助于延长车辆续航距离以及提高性能。
SiC MOSFET 5kW 高效率无风扇逆变电路
描述- 采用了发挥碳化硅(SiC)MOSFET高频特性的Trans-link交错型逆变电路(1)、实现了5kW时的功率转换效率达到99%以上。在该电路拓扑中,平滑电抗器的电感量可以减小。由于电抗器的匝数减少、使铜损大幅度减少实现了高效率。在这份资料中,介绍这个全新的逆变器设计的例子。
型号- PS2501L-1,MCR18ERTJ200,NJM78L05UA,MCR03EZPJ332,MCR03EZPJ334,RK73B1JTTD104J,PC092-01-00,B4B-XH-A,TR10P,DE1E3KX222MA4BN01,RK73B1JTTD472J,GRM188B31H104KA92,RB751S-40,MB3P-90,RK73B2BTTD105J,RK73B2BTTD4R7J,PH-1X10RG2,RK73B1JTTD103J,B5B-PH-K-S,PH-2X09SG,SSM3K318T,GRM1851X1H472JA44,KRB-408,GRM188B11H103KA01,HOT-2608B,ELXZ350ELL101MF15D,TLP700A,SCT3030AL,GRM188R11H104KA93,MCR10ERTJ4R7,TC4069UBF,RK73B1JTTD102J,PC045-00-00,S4B-EH,MOSX1C1R0J,NJM431U,GRM185B31E105MA12,DE1E3KX102MA4BN01,2SCR542P,GRM188R71E104KA01,PH-2X04SG,FHU-2×4SG,MCR10EZPJ105,PH-2X08SG,RK73B1JTTD153J,RK73B1JTTD101J,MCR03EZPJ101,ADR-48-50-0R5YA,MCR03EZPJ102,MCR03EZPJ103,24LC64SN,EG01C,MCR03ERTJ302,CQ-3303,CT-6E-P5KΩ,TR008A,1SS355,NE555D,ECQE6103KF,MCR18ERTJ4R7,ES1A,GRM188B11H102KA01,PC089-01-00-50P,NJM2732M,BFC233920105,MB4P-90,MCR03ERTJ331,B3P-VH,TBD,STR-A6079M,ACPL-C87AT,SCS212AM,MCR18ERTJ1R0,TRANS-LINK,GRM1851X1H222JA44,2SAR542P,MOSX1C334J,MCR03ERTJ202,FHU-2X9SG,VDCT,UDZS5.1B,ECQE6104KF,ELXZ100ELL681MF15D,S3B-EH,RK73B1JTTD271J,2SC3325,PH-1X04SG,MCR03EZPJ152,GRM188R71E105KA12,ELXS451VSN561MA50S,GRM21BR71E105KA99,MCR03ERTJ470,RK73B1JTTD470J,SCT3017AL,RK73B2BTTD563J,RK73B1JTTD000J,TA48M05F,MCR03ERTJ102,MCR03ERTJ103,SBR1U150SA-13,FHU-2X8SG,450MPH105J,UCS2W220MHD
SiC肖特基势垒二极管
描述- 这份资料主要介绍了多种类型的元器件,包括碳化硅肖特基二极管、碳化硅MOSFET、全碳化硅功率模块和智能功率模块。资料详细描述了这些元器件的尺寸、封装类型和基本订购单位。此外,还提供了相关产品的图片和包装信息。
【经验】如何通过增加栅极电容的方式减缓SiC MOSFET 的米勒效应
SiC MOSFET 同Si 基MOSFET和IGBT一样,由于存在米勒电容,都会有米勒效应的存在。由于SiC材料所带来的优势,SiC MOSFET可以工作在更高开关频率下,这样就会面临更严峻的误触发现象。所以在驱动电路设计中需要增加相关设计,使之能够较为有效地避免误触发。本文将主要介绍增加栅极电容的方式。
SiC MOSFET 栅极-源极电压的浪涌抑制方法 Application Note
描述- 本应用手册主要探讨了SiC MOSFET在开关动作过程中栅极-源极电压浪涌的产生原因及抑制方法。详细分析了桥式电路中开关动作产生的栅极-源极电压浪涌现象,并提出了浪涌抑制电路的设计方案,包括正向和负向浪涌的抑制措施。同时,对浪涌抑制电路的布线设计进行了说明,以确保电路的稳定性和效率。
型号- SCT3040KR,SCT3040KR 4L
ROHM 4th Gen SiC MOSFET Simulation Models for PSIM™ Now Available
ROHM has begun offering 4th Gen SiC MOSFET simulation models compatible with PSIM™, a circuit simulator designed for power electronics and motor drive developed by Altair®. Designers can now easily download model files to perform system-level evaluations, allowing for efficient design and evaluation across a wire range of industrial sectors, further promoting the use of power devices.
电子商城
现货市场
服务
可定制LAMP LED、 CHIP LED、 PLCC LED、 汽车用车规级LED、COB LED的尺寸/电压/电流等参数,电压1.5-37V,电流5-150mA,波长470-940nm。
最小起订量: 30000 提交需求>
可定制单色光灯珠、双色灯珠、全彩灯珠、发光二极管、贴片灯珠、贴片LED等产品,尺寸:0.6*0.3mm-3.2*2.7mm,波长:405-940nm,亮度:24-750mcd,电压:1.5-3.5V。
最小起订量: 3000 提交需求>
登录 | 立即注册
提交评论