昕感科技1200V/7mΩ SiC MOSFET,采用TO247-4PLUS封装,方便实现大电流并联
众所周知,SiC作为一种性能优异的第三代半导体材料,因其高击穿场强、宽禁带宽度、高热导率、高载流子饱和漂移速度等特性可以辅助电子器件更好地在高温、高压、高频应用中使用,可有效突破传统Si基半导体材料的物理极限。
目前使用最广泛的SiC开关器件是SiC MOSFET,与传统Si IGBT相比,SiC材料的优异性能配合MOSFET单极开关的特点可以在大功率应用中实现高频、高效、高能量密度、低成本的目标,从而推动电力电子系统的发展。
从技术上讲,随着近些年来电力电子系统功率密度和电力电子系统效率的明显发展,电力相关设备代替传统能源设备的趋势已经日益显著。随着SiC MOSFET器件应用的范围越来越广泛,市场以及产业对SiC器件的需求也逐渐提高,需要SiC器件承载更大的功率,导通更大的电流,提升更高的效率。为满足这些需求,一个有效的手段就是降低SiC器件的总电阻,降低总电阻主要有两个思路:
①增加并联器件的数目
②降低单个器件电阻。
增加并联器件数目的做法属于一种常见的方式,但是同时也存在明显的短板。例如:由于多颗器件是并联使用,对器件性能的一致性要求更高,若一致性出现偏差将产生导致不均流现象。为提升一致性则需要增加筛选成本。更多的器件并联也意味着需要更多的引线互联,这也将引入更多的寄生参数,在越来越高频的应用中引入的寄生参数将带来不必要的效率损失。
所以低导通电阻器件也成为了应用端开始重点考虑的方案。该方案可以减少并联器件数目,降低芯片一致性筛选成本,抑制均流、均温等可靠性问题;同时也优化了打线、布局工艺,降低设计难度。而相比较于多个大电阻器件并联方案,使用单个低导通电阻电阻器件不需要预留芯片间的间距避免串扰问题,提升了器件有源区的占比,可以提升整体电流能力,节约空间实现小型化,降低系统成本。
昕感科技在低导通电阻器件的开发上走在了行业的前列,于2023年推出一款1200V/7mΩ SiC MOSFET产品N2M120007PP0,使用了TO247-4PLUS封装降低器件热阻。该产品工作电流可达300A以上,具有正温度系数,可方便实现大电流并联。同时,昕感新品的漏电流极低,具备优越的高压阻断特性,方便用户使用和节省成本。
参考文献:
1.盛况,中国电机工程学报,2020
2.F. Roccaforte, Microelectronic Engineering, 2017
3.Y. Nakamura, IEEE TPEL, 2023
- |
- +1 赞 0
- 收藏
- 评论 0
本文由子文转载自昕感科技公众号,原文标题为:昕课堂丨低导通电阻SiC器件在大电流高功率应用中的优越性,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
相关推荐
【元件】瞻芯电子推出2000V SiC MOSFET和SBD,助力高压光伏逆变器系统
为满足光伏、储能和电网等领域对更高耐压等级功率器件需要,瞻芯电子开发2000V碳化硅(SiC)MOSFET和SBD工艺平台。首批2款产品通过严格可靠性认证,并正式推向市场。目前已有客户导入新产品测试,进入整机验证阶段。
【元件】扬杰科技新推出用于光伏逆变、充电桩、电源等的SiC MOSFET,采用开尔文接触,工作温度175℃
扬杰科技近日推出了一系列TO-263-7L、TOLL、T2PAK产品,产品均采用开尔文接触,明显减少了开关时间,降低了开关损耗,支持更高频率的应用与动态响应;同时相比插脚器件降低了电路板空间,增加了电路板的集成化,非常适合应用于高功率密度和高效率电力电子变换系统。
ROHM提供支持电力电子仿真工具PSIM™的第4代SiC MOSFET仿真模型
全球知名半导体制造商ROHM(总部位于日本京都市)开始提供支持电力电子仿真工具PSIM™的第4代SiC MOSFET仿真模型。该模型可在Altair® US公司开发的电力电子和电机控制用的电路仿真工具PSIM™中使用。设计人员可从ROHM官网下载模型文件,轻松进行系统级评估。这一进展使得在更广泛的产业领域中进行高效设计和评估成为可能,并能进一步推动功率元器件的使用。
解读SiC MOSFET关键参数——Rds(on)
当代电子技术的发展不仅需要高效性能,还需要可靠和可持续的解决方案。而SiC MOSFET作为一种新型的功率器件,正在引领着未来能源转型的浪潮。今天,我们要聊的主角是碳化硅MOSFET中的一个关键参数——Rdson,这个参数的优化,就像是在节能减排的长跑中,为我们的电动汽车、可再生能源系统换上了更轻盈的跑鞋。
1700V SiC MOSFET在大功率能源及工业领域的应用
1700V SiC MOSFET的低开关损耗可提高开关频率,且每个单元的总体尺寸大幅减小。同时,1700V的高阻断电压还可减少达到相同直流电压所需的单元数。在以上种种简化和优化后,终端应用的系统可靠性大大提升,而更少的有源开关和栅极驱动器也降低了整体成本。SMC桑德斯微电子根据客户的需求设计和生产半导体及相关产品。
中瑞宏芯SiC MOSFET在1500V光伏逆变器中的应用与优势
为满足光伏、储能、电机驱动和电网等领域对高电压、大功率的应用需求,中瑞宏芯开发出2000V 40mΩ和1700V 25mΩ SiC MOSFET产品。采用TO247-4封装,具有开尔文源极,驱动电压15V~18V。导通电阻的温度系数只有1.5。
简化电动汽车充电器和光伏逆变器的高压电流检测
在电动汽车充电器中,电流传感器用于测量输入交流电源、直流/直流转换器和输出电源等位置的电流,以确认充电器是否正确地将交流电输送到电动汽车的车载充电器系统,或者将直流电直接输送到电池。如今,400V 电池正在朝着 800V 甚至更高电压的方向发展,以实现更大功率和快速充电。
【选型】力特1700V SiC MOSFET助力光伏逆变器1500V系统辅助电源高效稳定运行
现在光伏逆变器电压等级提升到1500V,如果选用单端反激拓扑,单管MOS耐压值需要超过3000V,因此建议采用双管反激方案,推荐Littelfuse的SiC MOSFET LSIC1MO170E1000,1700V高耐压,同时采用常用的TO247封装,可直接替换Si MOS使用。
B2M040120Z碳化硅MOSFET
描述- 本资料介绍了B2M040120Z型号的碳化硅(SiC)MOSFET的特性、最大额定值、电学特性、热特性、典型性能和应用领域。该器件具有低导通电阻、高阻断电压、低电容等特点,适用于开关电源、逆变器、电机驱动器和电动汽车充电站等领域。
型号- B2M040120Z
昕课堂丨一文了解SiC MOSFET鲁棒性原理
昕感科技基于车规平台推出的1200V SiC MOSFET系列产品拥有优异的鲁棒性。在800V母线电压条件下短路耐受时间达到3us,可以为系统提供充分的反应时间,提升了系统的可靠性。昕感N2M120007PP11同样拥有优秀的最大雪崩击穿耐受能量EAS 。
罗姆第4代SiC MOSFET裸芯片批量应用于吉利集团电动汽车品牌“极氪”3种主力车型
日前,搭载了罗姆第4代SiC MOSFET裸芯片的功率模块成功应用于“极氪”电动汽车3种车型的主机逆变器上,有助于延长车辆续航距离以及提高性能。
SL87N120A 1200V 17mΩSiC MOSFET
描述- 本资料介绍了SL87N120A SiC MOSFET的特性,包括其高压、低导通电阻、高速和高工作结温等特点。该产品适用于EV主驱逆变器、光伏逆变器、电机驱动和高压DC/DC变换器等领域。
型号- SL87N120A
【元件】昕感科技新近推出兼容15V栅压驱动的1200V/13mΩ低导通电阻SiC MOSFET产品
近日,昕感科技发布一款兼容15V栅压驱动的1200V低导通电阻SiC MOSFET产品N2M120013PP0,导通电阻在15V栅压下低至13mΩ,配合低热阻TO-247-4L Plus封装,可以有效提升电流能力,满足客户的大功率应用需求。
CRXQF40M120G1 SiC MOSFET 1200V,40mΩ,55A
描述- 本资料介绍了CRXQF40M120G1型碳化硅(SiC)MOSFET的特性、应用领域和电气参数。该器件具有高阻断电压、低导通电阻、高速开关特性,适用于太阳能逆变器、开关电源、高压直流/直流转换器和电动汽车充电器等领域。
型号- CRXQF40M120G1
SiC器件在电动汽车无线充电的应用及技术优势
无线电能传输技术是一种新兴的充电技术,通过电磁感应原理将电能从发射侧装置传输到接收侧装置中,再通过功率变换电路给负载进行充电,从而实现非接触式充电。近年来,电动汽车无线充电技术备受关注,并逐步走向商业化应用。本文将重点探讨碳化硅器件在电动汽车无线充电的应用及技术优势。
电子商城
现货市场
服务
定制液冷板尺寸5mm*5mm~3m*1.8m,厚度2mm-100mm,单相液冷板散热能力最高300W/cm²。
最小起订量: 1片 提交需求>
可定制平板变压器、主变压器的开关频率2MHz以内、输入电压1400V以内、输出电压1400V以内,50%以上的产品采用自动化生产,最快3天提供样品、7天交货。
最小起订量: 3000 提交需求>
登录 | 立即注册
提交评论