基于AMESim仿真软件的热泵空调低温制热系统设计及仿真
摘要:针对纯电动汽车热泵空调系统在冬季低温潮湿环境下制热能力不足、换热器出现结霜现象等问题,提出了一种新型热泵空调制热系统。该系统将电机余热回收用于提升热泵空调的制热性能,抑制换热器结霜现象的发生,同时使用PTC加热器耦合制热,使得空调系统可以在更低的环境温度下正常工作。首先运用AMEsim仿真软件搭建电机散热循环系统仿真模型对电机余热的利用价值进行分析,得到电机余热在电机频繁以中高转速运行的工况下具有较大回收价值;然后针对带有电机余热回收的新型热泵空调系统,利用AMEsim软件建立了压缩机、换热器、膨胀阀、气液分离器等热泵空调制热模型,与电机散热循环系统以及PTC加热器耦合,对热泵空调系统的低温制热性能和抑制结霜性能进行分析。研究结果表明:新型热泵空调系统比普通热泵空调系统具有更好的制热性能,在环境温度为0℃时,新型热泵空调系统的COP比普通热泵空调提升了14.5%;在环境温度为-10℃时,开启PTC加热器后新型热泵空调系统能够正常工作且蒸发器不会发生结霜现象,并且其等效COP仍然大于1。
1新型热泵空调系统的构成及原理
1.1 新型热泵空调系统的构成
一般的热泵空调系统由压缩机、车内外换热器、膨胀阀和气液分离器等部件组成,动力电池直接控制压缩机的转速,从而使制冷剂在各个管道及部件中流动,在车内外换热器中实现的热量交换。如图1所示,本文提出的新型热泵空调系统增加了电机余热回收模块,将电机运行中产生的热量传输到车外换热器外表面,以此提高车外换热器的环境温度,从而达到抑制车外换热器结霜,提高热泵空调工作能力的效果,并且还设计了PTC加热器,可以在低温时抑制结霜。本文只涉及制热工况,故不对空调制冷部分进行表述。
图1 新型热泵空调构成示意图
1.2 电机余热分析
纯电动汽车的余热主要集中在动力电池和电机上,电机余热远远大于动力电池的余热,并且动力电池在冬季低温环境下既需要散热又需要加热,这导致电池热管理系统较为复杂,因此本文设计中只考虑对电机余热的利用。在AMESim软件中建立的电机循环散热系统模型如图2所示,图中电源只为电机提供电压,不对电池本身的放电情况和温度影响等进行研究。
图2 电机余热模型
模型中设置电动机转速分别为1500r/min、3000r/min、5000r/min和8000r/min,扭矩设置为75N·m,风扇处空气的质量流量为0.3kg/s。通过散热器进风口和出风口的焓值的变化,可以计算得到电机余热的热功率如式(1)所示:
式(1)中,P为电机余热的热功率,单位kJ;
为空气的质量流量,单位kg/s;h1、h2分别为散热器进风口和出风口的焓增,单位kJ/kg。
不同电机转速工况下电机余热的热功率变化情况如图3所示。从图3中可以看出,电机余热的热功率随着电机运行时间的增加而增大,随着电机转速的增大而增大。开始时电机余热的热功率较低是因为刚启动时壳体以及循环水的温度较低,大部分的电机余热被自身冷却循环吸收了,只有少部分被带到散热器,当电机以中高转速运行时间超过十分钟后,可利用的电机余热变得十分可观。
图3 电池和电动机废热对比图
2 仿真模型的建立
经过电机散热模型的电机余热分析发现,电机运行中产生的余热非常具有利用价值,但一般情况下这部分能量都散失到外界环境当中,造成了能源的浪费。若将这一部分能量通过水循环输送到空调系统中的车外换热器处加以利用,这相当于降低了动力电池的能量消耗,符合目前节能化的发展趋势。为了更好的分析电机能量回收对于热泵空调制热性能的影响情况,本文建立了对应的热泵空调系统的AMESim仿真模型。
2.1 压缩机模型
压缩机是空调系统的驱动部件,是最重要的核心部件之一。在AMESim软件的压缩机模型中不考虑其实际的结构形式,只计算影响压缩机性能的主要参数容积效率和等熵效率等。容积效率如式(2)所示:
式(2)中:m为制冷剂质量流量,单位kg/s;ρ为压缩机入口制冷剂密度,单位kg/m3;n为压缩机转速,单位r/min;Vh为压缩机排量,单位m3。等熵效率如式(3)所示:
式(3)中:hout为压缩机出口焓值,单位kJ/kg;hin为压缩机进口焓值,单位kJ/kg;Δhi为等熵焓差,单位kJ/kg。
本文选用排量为36cm3的定排量压缩机,并且压缩机转速设定为4000r/min不变。
2.2 换热器模型
冷凝器采用的是微通道平行流式换热器模型,其几何参数如表1所示。蒸发器采用的是U型通道翅片换热器模型,其几何参数如表2所示。
表1 仿真模型冷凝器参数
表2 仿真模型蒸发器器参数
虽然冷凝器和蒸发器所采用的换热器结构形式不同,但是换热原理一样。制冷剂与换热器壁面之间的对流换热量为:
式(4)中,h3为换热系数,单位W/(m2·K);A1为换热面积,单位m2;Tre为制冷剂温度,Twall为壁面温度,单位K。其中换热系数h3的计算如式(5)所示:
式(5)中,λ为制冷剂导热系数,单位W/(m·K);Nu为努赛尔数;dh为制冷剂侧水力直径,单位m。空气侧与换热器壁面之间的对流换热量如式(6)所示:
式(6)中,h4为换热系数,单位W/(m2·K);A2为换热面积,单位m2;Ta为制冷剂温度,Twall为壁面温度,单位K。其中换热系数h2的计算为:
式(7)中,λa为制冷剂导热系数,单位W/(m·K);Nu为努赛尔数;dha为制冷剂侧水力直径,单位m。
2.3 计算模型
本文利用AMESim软件建立汽车空调系统仿真模型。仿真中使用了其中的空调模块、热力学模块、两相流模块、机械及随动件模块和信号控制模块,选用的制冷剂为R134a。依据图1所示的构成原理搭建的空调仿真计算模型如图4所示,该模型在一般的热泵空调系统中加入了图2所示的电机余热模型,将电机运行时所产生的余热和热泵空调系统模型中的蒸发器模块相结合,车外的冷空气首先会与电机冷却循环回路中的散热器发生热交换,在吸收了电机余热之后再与蒸发器发生热交换,从而提高了蒸发器的环境温度,达到抑制蒸发器结霜、提高空调制热性能的效果。若蒸发器仍然发生结霜现象,则开启PTC加热器,提高蒸发器进气口的空气温度,从而将霜融化,达到除霜的效果。
图4 新型热泵空调仿真模型
2.4 仿真工况
本文研究的新型汽车空调系统主要针对冬季低温环境下的制热性能,所以设置冬季汽车空调工作条件作为仿真工况,车外环境温度为-10℃~5℃,空气相对湿度为60%,压缩机转速为4000r/min,电动机转速取5000r/min代表中等转速,PTC功率设置为0和1000W两个状态,具体工况设置如表3所示。
表3 仿真工况设置
3系统仿真分析
3.1 蒸发器温度分析
本文的仿真计算是在蒸发器不发生结霜现象下进行的,而蒸发器的结霜现象的发生与蒸发器的进风温度、湿度和湿度都有关,为简化模型,本文中假设蒸发器的进风温度为0℃、湿度为60%、质量流量为0.3kg/s时,模型中蒸发器的结霜速率与化霜速率处于动态平衡状态,即蒸发器处于结霜的临界状态。
按照表3中1、2、3工况点运行仿真得到新型空调系统蒸发器进风温度的情况如图5所示。
图5 蒸发器进风温度分析
普通空调的蒸发器进风温度即是车外环境温度,而新型空调的蒸发器进风温度是环境中的空气经过电机余热或者PTC加热器加热之后的空气温度。从图5中可以看出,新型热泵空调系统的蒸发器进风温度随着仿真运行时间的增加而增大。当环境温度在0℃左右时,普通空调的蒸发器会发生结霜现象,而新型热泵空调不会发生结霜现象;当环境温度为-10℃,新型热泵空调的蒸发器也会发生结霜,此时需要开启PTC加热器耦合制热来抑制结霜;当环境温度为-10℃,同时开启PTC时,仿真运行20分钟后可以达到临界结霜温度。这是由于电机循环水的初始温度设置为和环境温度一致,PTC加热器需要先对循环水加热,实际工况中可以增加PTC功率来缩短这段加热时间。
3.2 空调系统制热能效比分析
空调系统的制热能效比COP(Coefficie nt of Performance)是反映空调制热能耗大小的重要指标,同时也是评价制热性能优劣的重要参数。
式(8)中,Q为空调系统的制热量,单位J;W为压缩机的功耗,单位J。根据表3所示仿真工况中1、2、3、4工况点运行得到普通空调系统的COP与带电机余热回收功能的空调系统COP的对比情况如表4所示。
表4 两种空调系统COP对照表
注:仿真中假设蒸发器未发生结霜现象,蒸发器的换热系数表。
其中,开启PTC加热器后新型热泵空调的能效比为等效等效比,即式(8)中W为压缩机与PTC功耗之和。
从表4中可以看出,带有电机余热回收功能的新型热泵空调系统的COP有较大提升,当环境温度为0℃时,在蒸发器不发生结霜的情况下,COP能够提升14.5%,能够有效减少能量的浪费,提高热泵空调的制热性能;当环境温度为-10℃,同时开启PTC加热器时,热泵空调的等效能效比为1.10,仍然大于单独使用PTC加热器进行制热的能效比。
4 结语
1)运用AMESim软件搭建了电机循环散热回路仿真模型,对电机在运行中所产生的热量变化情况进行分析,由仿真模型可以看出,电机余热的热功率随着电机运行时间的增加而增大,随着电机转速的增大而增大,在电机频繁以中高转速运行的工况下,电机余热具有很大的回收价值。
2)针对电机余热设计带能量回收的热泵空调系统,利用AMEsim软件建立了压缩机、换热器、膨胀阀、气液分离器等新型空调系统模型,联合电机循环散热回路模型对电动汽车热泵空调的冬季制热性能进行优化,由仿真模型可以看到,模型的假设以及简化符合实际研究范围,仿真模型满足设计要求。
3)根据不同的工况条件,对所建立的热泵空调系统模型进行仿真分析,并与普通空调进行对比,得到新型热泵空调能够更好的抑制蒸发器结霜现象的发生,并且可以在发生结霜时进行除霜;同时,新型热泵空调系统的制热能效比COP比普通热泵空调提升了13.5%~18.7%,即使在-10℃的环境温度下开启PTC进行抑制结霜,系统的等效COP也大于1。
本文设计的新型热泵空调系统从抑制车外换热器结霜出发,将电机余热与热泵空调系统以一种全新的方式结合来优化热泵空调的低温制热性能,使得热泵空调可以在更低的环境温度下工作,同时提出了热泵空调、PTC加热器和电机余热三者耦合制热的新思路。
- |
- +1 赞 0
- 收藏
- 评论 0
本文由ll转载自贝思科尔公众号,原文标题为:【分享】基于AMESim的热泵空调低温制热系统设计及仿真,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
相关研发服务和供应服务
相关推荐
介绍Flotherm软件使用教程
Flotherm软件是一款强大的热设计仿真工具,它能够帮助工程师对电子设备的热性能进行精确分析和优化。本文中贝思科尔分享Flotherm软件的基本使用教程,帮助初学者快速上手。
icepak和flotherm热仿真软件帮助工程师预测产品的热性能,进行散热结构的优化
icepak和flotherm软件作为热仿真技术的杰出代表,为电子设备的热设计提供了强有力的支持。它们不仅仅能够帮助工程师预测产品的热性能,还能够指导他们进行散热结构的优化。相信未来随着技术的不断进步,这两款软件的功能和应用范围还将进一步扩大。
Simcenter STAR-CCM+车辆外部空气动力学特性——通过快速准确的CFD仿真加速空气动力学创新
如今,对快速准确的外部空气动力学仿真的需求非常迫切。电动汽车的续航里程是潜在客户的关键决策参数,优化/最小化空气阻力以增加续航里程是一个关键的工程目标。此外,新的排放法规要求报告每种车辆配置的油耗,总数可能达到数千个。因此,仿真必须能够准确预测不同设计之间的阻力(增量)差值,因为现在这是官方强制要求开发报告的。本文贝思科尔来给大家分享通过快速准确的CFD仿真加速空气动力学创新的相关设计经验。
四种使用体验感很好的热仿真软件介绍
在热仿真软件的使用阶段,能够根据现场的真实需求,通过模拟的方式,对物体的环境,温度进行调节,从而展现出更好的热学效果。有了此种软件的帮助,不仅可以推进设计的进度,还可以让测试的准确度得到提升。本文贝思科尔介绍了四种使用体验感很好的热仿真软件,包括:COMSOL Multiphysics、FlOVENT、MATLAB和FloEFD。
Star CCM+多孔介质设定,使得用户能够精确模拟多孔介质的流体流动、传热和物质传输现象
对于工程仿真和计算流体力学(CFD)研究来说,如何准确模拟多孔介质的行为是一个重要的课题。无论是在土木工程、环境工程还是在生物医学领域,这一问题都扮演着重要角色。Star CCM+作为一款强大的CFD软件,提供了多孔介质设定的功能,使得用户能够精确模拟多孔介质的流体流动、传热和物质传输现象。
Simcenter FLOEFD 2406 新功能 | 无缝嵌入三维CAD的CFD仿真工具
通过从 Simcenter Flotherm XT 软件导入模型,新发布的 Simcenter FLOEFD 2406 软件增强了整个 Simcenter 产品组合的集成性,本文介绍面向电子冷却仿真的新功能和软件整体增强功能如何帮助您保持集成性、对复杂性进行建模、探索各种可能性并加快仿真流程。
FloEFD双热阻模型分析
FloEFD是一款由Siemens Digital Industries Software开发的计算机辅助工程(CAE)软件,主要用于流体动力学和热仿真的数值分析。双热阻模型是一种简化的方法,用于模拟电子封装中的热传导路径。这种模型特别适用于那些需要快速选代设计的场合,因为它简化了计算模型,但仍能提供足够准确的结果。本文中贝思科尔来给大家详细介绍FloEFD双热阻模型。
模流分析软件:解锁注塑成型的高效优化之道
模流分析软件是一种用于模拟和优化塑料注塑成型过程的先进工具。通过计算机仿真技术,这些软件能够准确预测塑料在模具中的流动行为、温度变化以及成型后的物理性能。这种技术不仅能够帮助工程师在设计阶段及早发现潜在问题,还能大幅提高生产效率,降低成本,进而提升产品质量。本文中贝思科尔来为大家介绍模流分析软件,希望对各位工程师朋友有所帮助。
Calibre在后仿真中的应用——助力完成详尽后仿真,验证设计功能及性能
Calibre在集成电路设计中,关键承担物理验证,确保设计与工艺要求一致。通过DRC和LVS检查,Calibre保障电路布局无误。其提取的详细寄生参数,为后仿真提供精确模型,直接影响电路性能分析。结合HSPICE或Spectre等仿真工具,Calibre助力完成详尽后仿真,验证设计功能及性能。因此,Calibre在后仿真流程中不可或缺,为集成电路设计的成功验证奠定坚实基础。
lumerical软件有哪些功能和特点?
lumerical软件是什么?lumerical软件是一款用于光学仿真和设计的商业软件。它提供了一系列工具和功能,可以帮助用户模拟和优化光学系统、光学器件和光学材料。本文贝思科尔便带着大家详细了解一下这一软件的功能以及应用场景。
常见的热仿真软件介绍,帮助工程师根据具体需求选择适合的方案
热仿真软件在工程设计、产品研发以及系统优化中扮演着至关重要的角色,它们能够帮助工程师预测和分析产品在不同环境和操作条件下的热性能。以下是几种常见的热仿真软件介绍。在进行热仿真时,工程师应考虑软件的功能、易用性以及与其他设计和分析工具的兼容性。
【仪器】什么是lumerical软件?完整的光子学仿真软件解决方案,支持全套光子学器件级和系统级仿真
光子学在通信、计算、传感、成像、医疗、能源等方面有着广泛的应用和前景。为了设计和优化光子学元件、电路和系统,需要使用专门的光子学仿真软件,如lumerical软件来模拟和分析光的传输、散射、反射、折射、干涉、衍射、吸收、发射等现象。本文就来介绍下什么是lumerical软件?
贝思科尔开展线上直播活动——FloEFD和Flotherm XT软件中不同的PCB建模方式
PCB被广泛应用于各类电子产品中,运用专业的软件工具可以在面对不同的产品、不同的研究目的时快速而高效的建立PCB热仿真模型。软件工具的选择和应用就成为了提高产品竞争力的关键,为此贝思科尔联合热管理产业联盟开展了本次线上直播活动。本次直播以实际操作为主,介绍FloEFD和Flotherm XT软件中不同的PCB建模方式,特别是利用FloEDA-Bridge模块构建PCB的详细模型。
散热仿真软件:从理论到实践的全方位解析
散热仿真软件提供了一种有效的方法,使得在产品设计阶段便能进行深入的散热分析和优化,大大提升了工程师的设计效率和产品质量。本文贝思科尔从散热基础、模型构建的重要性、仿真分析的深度等方面介绍了散热仿真软件知识。
服务
提供多种可压缩材料如导热硅胶、散热垫片、各种相变材料以及其他粘合剂和固体试样的材料导热系数测试,给出测试结果及数据解析报告;测试范围:最大加热电流5A;热阻范围:0.01K/W-5K/W。
实验室地址: 深圳 提交需求>
提供稳态、瞬态、热传导、对流散热、热辐射、热接触、和液冷等热仿真分析,通过FloTHERM软件帮助工程师在产品设计初期创建虚拟模型,对多种系统设计方案进行评估,识别潜在散热风险。
实验室地址: 深圳 提交需求>
登录 | 立即注册
提交评论