HVAC System Upgrades and Optimization Via Sensors + 2 Checklists
Take a look at any HVAC system from 50 years ago.
What are its defining characteristics?
It’s large. It’s cumbersome. It’s inefficient.
And compared to the systems of today and the demands for them, it's now practically obsolete. Sure, there are some older systems out there that still do their primary function, but they’re practically gas-guzzling vehicles – inefficient and outdated.
The simple fact is that HVAC systems have changed. Even those providing climate control for large industrial facilities or commercial shopping centers are smaller, more responsive, and use less energy.
HVAC systems continue to change.
For those who design & manufacture HVAC systems or their controls, it's an exciting time for taking indoor climate control in a new, optimized direction. With advanced sensor technology, it's more possible than ever to bring improved functionality without compromise to HVAC in any application.
In this article, we'll explore when it's time to bring new sensor technology into the picture for HVAC system upgrades and optimization and how it's changing the game for indoor climate control.
Meeting Today’s Performance Demands with HVAC System Upgrades and Optimization
It’s easy to stay with what works.
For instance, if the HVAC temperature sensors you’ve integrated into system design are the same ones you’ve used for the last two decades and they do their job, why change a thing?
Or if your control system hasn’t been upgraded in an equally long amount of time and your customers aren’t complaining, is there really a need to make any adjustments?
In short, yes, and the reason is simple.
The expectations for HVAC functionality have changed. While the majority of performance demands are market driven, there are a fair amount that are regulations.
In more recent years, there’s new emphasis being put on HVAC system upgrades and optimization for several metrics where advanced sensor technology becomes a must:
Indoor Air Quality: In a nearly post-pandemic world, indoor air quality is getting a new level of attention. Now, HVAC systems are expected to help mitigate the spread of airborne pathogens, while scrubbing the air and monitoring for other pollutants and respiratory hazards.
How Advanced Sensor Technology Fits in: Advanced sensors now can detect various pollutants, CO2 levels, and other air quality indicators. This capability allows HVAC systems to adjust ventilation rates automatically and maintain healthy indoor environments.
Energy Efficiency: The push for HVAC system optimization for energy management isn't exactly new, but it's certainly not one that's going away any time soon. In fact, moreHVAC systems are transitioning to fully electric operations, reducing reliance on fossil fuels and lowering carbon emissions.
How Advanced Sensor Technology Fits in: Sensors can optimize energy use, adjusting system use based on occupancy (or lack thereof), time of day, or specific demand needs.
Remote Monitoring and Control: In a certain respect, HVAC control system optimization strategies are no different than what we're seeing with other building management systems – you no longer need to be in the same room or even continent to control the system. Thanks to IoT (Internet of Things) technology, HVAC system managers can give the system attention no matter where they are.
How Advanced Sensor Technology Fits in: Advanced sensors can provide real-time data on system performance, enabling remote monitoring and control. This not only allows for proactive maintenance but also allows for more efficient troubleshooting and issue resolution.
Integrated Control Systems: Along the same lines as our last point, IoT technology is streamlining management of most building or campus-wide systems – from HVAC to lighting and security – from a single platform.
How Advanced Sensor Technology Fits in: The same as with remote monitoring, advanced sensor technology makes it easy to monitor certain HVAC performance metrics and environmental factors in real-time alongside other building or campus operations.
Checklist #1: 6 Indicators Your HVAC System Design Needs A Sensor Upgrade
To our point about sticking with what works ... how do you know when it's time to integrate advanced sensor technology into your HVAC or HVAC control systems?
The answer goes beyond simply being overdue (though if it's been a decade or two since you made changes to your HVAC system components, it might be time). The fact is expectations for HVAC functionality have changed.
For HVAC and HVAC control system designers and manufacturers, there are a few telltale signs that it's time to rethink the sensors you're using for climate control management:
●High Energy Consumption – If system evaluations reveal increased energy consumption without changes in demand, this suggests inefficiencies in current sensor technology, underscoring the need for systems with more precise control capabilities.
●Indoor Air Quality Optimization – Signs of deteriorating air quality, such as elevated humidity or particulate levels, indicate the existing sensors' inadequacy in adjusting HVAC operations to maintain optimal indoor conditions.
●Control System Responsiveness – Inconsistencies in temperature regulation, unnecessary cycling, or failure to achieve desired setpoints highlight limitations in the system’s current sensor feedback mechanisms, necessitating upgrades to more responsive and accurate sensors.
●Adaptation to Alternative Energy Sources – Transitioning HVAC systems to accommodate shifts to electric or other energy sources demands sensor technologies that are compatible with these newer, more sustainable systems, ensuring maximized efficiency and performance.
●Increasing Repair Demands – A rise in maintenance requirements and repair costs points to the aging of system components, including sensors. Upgrading to newer, more robust sensor technologies can reduce long-term costs and enhance system reliability.
●Remote Accessibility & Functionality – Limited or non-existent remote monitoring and control capabilities in current systems signal a need for integration of smart sensors and IoT technologies.
●Bonus Indicator: Meeting Regulations/Industry Standards – This one isn't so much an indicator as it is a reality for HVAC performance. Just like HVAC systems, the regulations and industry standards governing them evolve, too. Put simply, the "old" technology comprising your HVAC design might not cut it in meeting the latest performance requirements.
Checklist #2: Challenges for Implementing Advanced Sensors
Ideally, HVAC system upgrades and optimization with sensor technology would be as easy as swapping out one component for another, newer one. The design phase of creating an HVAC system or its control mechanisms, is an easier task as everything is conceptual and can be worked out on paper.
But with existing systems – particularly, older HVAC systems – adding advanced sensors can present some unique challenges. Before starting to add the latest advanced sensor technology to your system, consider
●Cost: Upgrading to advanced sensor systems can be expensive, especially for large buildings or complex HVAC systems. The initial investment for sensors, along with the cost of installation and system configuration, can be prohibitive.
●Complexity of Installation: Installing new sensors in an existing system isn't always easy, requiring significant downtime or disruptions. This is especially concerning in buildings & applications that cannot afford to go without heating or cooling for extended periods.
●Compatibility: Some older HVAC systems may not be compatible with advanced sensor technology, meaning additional equipment and work are required to make the system ready for integration. The same goes for HVAC control systems – not all control systems readily interface with every sensor available. This can add to both cost and complexity.
●Accessibility: Integrating advanced sensors into existing HVAC systems presents accessibility challenges, such as limited space, complex system designs, and structural barriers that complicate installation. Additionally, the need for temporary system shutdowns can disrupt building operations, necessitating careful planning and expertise for effective integration.
The Easiest Solution
As with any major building system's design, there are plenty of options for the components comprising it.
Certainly, there are the good, better, best options. There are the easy, easier, and easiest options. And there are also the comparable options. It can get overwhelming quickly.
So how do you make the right choice and bring the right advanced sensor technology to your HVAC system upgrades and optimization without worry?
Let's cut right to the best (easiest) solution for HVAC system design upgrades and optimization: partner with an experienced sensor manufacturer.
Why?
With specialized knowledge and capabilities to tailor sensor technology to fit specific system requirements, the process of making HVAC design or system upgrades is simplified. More importantly, getting the right advanced sensor is out of your hands – it's on your manufacturer to deliver the sensor tech that meets all performance specs of your system.
HVAC System Design & Sensor Technology That Delivers
Like all machines and technology, HVAC systems will continue to evolve and adapt to the latest demands.
While it's nearly impossible to predict where the next round of industry changes will take us, one thing is certain: Advanced sensor technology will play a crucial role in HVAC system optimization and performance.
- |
- +1 赞 0
- 收藏
- 评论 0
本文由三年不鸣转载自AMPHENOL SENSORS Official Website,原文标题为:HVAC SYSTEM UPGRADES AND OPTIMIZATION VIA SENSORS + 2 CHECKLISTS,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
相关推荐
How to Cut the Cord and Save Energy with Sub-GHz Wireless Networks for HVAC Systems
Wireless network solutions that can connect sensors, actuators, controllers, and other devices without the need for wires offer a promising way to tackle concerns associated with HVAC systems. Silicon Labs leads in sub-GHz wireless solutions, offering a diverse portfolio of transceivers and wireless MCUs for various HVAC needs.
Optimizing Fast Charging with Electric Vehicle Sensors
Fast-charging technology is making this shift possible as it meets a major concern head-on. Electric vehicle sensors are the unsung hero in making EV charging as uneventful as filling up a gas tank.
The Necessary Sensors for an Ev Battery Pack & Cell Connection System
In a typical Electric Vehicle, the battery pack may experience thousands of charge and discharge cycles throughout its life. The pack Battery Management System monitors voltage, current, and temperature of cells.
Amphenol Sensors(安费诺)/Thermometrics 温度传感器选型指南
目录- 温度传感器产品介绍及应用领域 NTC热敏电阻/PTC热敏电阻 探针和组件 其他技术和附件
型号- T5D,HM,YA,YB,YC,P60,YD,YF,P65,YG,YH,RL40,YK,YL,YP,YR,EC95,GC32,YS,RL45,GC16,B35,UD20,RL30,3006,AB6,MELF,JA,YS4019,JB,JTC,JC,JD,RL35,JE,JF,MF65,SP85,JS2945,JI,B43,JL,JM,JP,FP10,JR,JTR,CTR100,FP14,P85,JW,M,NDK,T,NDM,CTR65,NDL,ZTP,BB07,PT1000,0706,BB05,NDP,YS4020,NDU,YSM 4021,CL,CTR85,BR16,KU,BR14,KY,BR11,TC,FP07,1403,NHQM,YSM,TH,R100,TM,MA400,PTSM,TP,1803,BB11,EVAP,P100,MA100,DK,SC30,R60,BR23,P20,R65,HVAC,P25,YM120,PT200,EVAPA1450,MS,DKM,MT,CTR60,P30,RL1004,BR32,A1447-A1450,ND,PTA,NK,EVAPA1447,1703,PTE,PTD,SP100,PTF,DC95,PTH,B05,B07,PTO,EVAP A1424,SC50,R85,BR42,C100,2006,JYA,NHQ,NHQMM,GC11,GC14,GE,RL20,M2000,B10,PT100,B14,GT,BR55,MC65,SP60,TK95,SP65,RL14,RL060628,RL10
Amphenol Sensors(安费诺)温度传感器/MEMS压力传感器/C〇2、湿度、灰尘传感器选型指南
目录- Sensors Temperature Sensors Pressure Sensors CO2, Humidity & Dust Sensors
型号- DK SERIES,NDP SERIES,NHQ SERIES,AAS-AQS-UNO-RH-CO2,RL40,T5D SERIES,FMA SERIES,GC32,EC95,AB6 SERIES,RL45,GC16,GT SERIES,DKM SERIES,CTP65,M SERIES,UD20,S SERIES,CTP60,RL30,AIT SERIES,GE-1935,TH SERIES,NDL SERIES,3006,MELF,YS4019,RL35,HM SERIES,GE-2102,GE-2103,JS2945,T6715,T6613-X,AAS-AQS-UNO,TM SERIES,R85 SERIES,SM-UART-04L,YSM SERIES,FP10,NPI-15,T6715-X,FP14,NPC-120,HS12SP,NPI-19,B35 SERIES,T6713,BB07,SUF SERIES,NK SERIES,BB05,YS4020,T6703,YSM 4021,YR SERIES,BR16,A-1737,BR14,T6700,BR11,T SERIES,FP07,1403,NHQM,P85 SERIES,ZTP SERIES,JF SERIES,NDK SERIES,JS8741,NPH SERIES,JS8746,R100,JR SERIES,PTSM,MA400,SM-PWM-01C,JB SERIES,1803,BB11,B05 SERIES,T6616,EVAP,YF SERIES,JA SERIES,P100,YD SERIES,YH SERIES,MF65 SERIES,YG SERIES,MA100,JIC SERIES,YB SERIES,B43 SERIES,T9602,NPC-100,YA SERIES,YC SERIES,SC30,CTP100,BR23,T6613,PTD SERIES,PTE SERIES,YM120,HVAC,JTC SERIES,JTR SERIES,MS SERIES,YK SERIES,WTF083B001,P30 SERIES,YL SERIES,YP SERIES,PTA SERIES,PTH SERIES,ND SERIES,B07 SERIES,PTF SERIES,PTO SERIES,P60 SERIES,JM SERIES,YS SERIES,T6600,RL1004,BR32,JS6780,JI SERIES,HS30P,JW SERIES,A1447-A1450,JS SERIES,TP SERIES,JE SERIES,JC SERIES,GE-1856,1703,B14 SERIES,T6615-X,GE SERIES,R65 SERIES,DC95,JYA SERIES,T3000,EVAP A1424,SC50,BR42,A-1266,C100,GE-1923,NPP-301,706 SERIES,2006,NKA SERIES,AS SERIES,B10 SERIES,P25 SERIES,NHQMM,GC11,RL20,CL SERIES,P20 SERIES,GC14,GE-1920,NPC-1220,JP SERIES,P65 SERIES,ES SERIES,CTP85,T6713-X SERIES,BR55,MC65,KU SERIES,TK95,NDM SERIES,R60 SERIES,NDU SERIES,NPC-1210,TC SERIES,JL SERIES,RL14,JD SERIES,RL060628,RL10
Amphenol Sensors(安费诺)/All Sensors 压力传感器选型指南(简版)
目录- 传感器解决方案及产品优势介绍 传感器技术介绍 单芯片压力传感器 双芯电路交叉耦合补偿压力传感器 双芯电路和气路交叉耦合补偿压力传感器 传感器应用领域介绍 压力单位换算 传感器通用名词解释
型号- DLH,ADCX,ACPC-C,AXCA,ACPC,BLV,DLV,ACPC-H,AXCA-PRIME,AXCA-MIDDLE,MAMP,MLV,SAMP,ACPC-P,BLC,ADUX,BLVR,MAMP-/P,ADCA,DLH,DLVR,DLVR,BLCR,MAMP-P,MDCX,ADO,BLV,AXCX-PRIME-INCH,DLHR,DLHR,AXCX,MLV,AXCA-MIL,BLC,DLC,ADO-MIL
工业HVACR传感器解决方案
描述- Amphenol Sensors提供广泛的传感器解决方案,专注于工业暖通空调(HVACR)领域。产品涵盖温度、压力、气体、湿度、振动、位置和流体水平等传感器,旨在提高能源效率和室内空气质量。解决方案包括户外空气、空气处理单元、管道测量、房间和过滤器监控、水管理等,支持建筑自动化系统。产品特点包括耐用设计、精确测量、定制选项和连接性。
Amphenol Sensors(安费诺)建筑及工业应用传感器选型指南
目录- Chip Cap 2完全校准的温湿度传感器 Telaire Ventostat®T8700壁挂式温湿度变送器 Telaire Ventostat®T8031 CO2小型风管式C02传感器 Telaire®T8041/T8042 分管式C02传感器 Telaire T8100-R系列挂壁式C02和温度变送器(带继电器) Telaire®7000室内空气品质监测器 Telaire VaporstatTM 9002红外露点变送器 Telaire®配件 Telaire HumiTrac™温湿度变送器 T9602湿度与温度传感器 AAS-53系列水管型温度变送器 ADT/AOT/AIT温湿度变送器使用说明书
型号- P40250128,CC2D265,P40250129,P40250126,P40250127,P40250125,P40250122,P40250123,DC95F302W,P40250120,P40250121,T8031,CC2D255,EHR-4,T8100-D-R,P40250139,K53,T8700,CC2A23,PT1000A,AIT,PT1000B,CC2A25,P40250133,P40250131,T2075NG,P40250130,T804K0-10V,T1508,T8200-D-5P,T8042-5VI0-5V,T9602-5-A-1,NI1000,9002,T9602-3-A-1,T5100,P40250149,CC2A35,T8700-E-D,P40250147,0-5000PPM,P40250144,PT100A,T7001I,P40250145,PT100B,P40250142,P40250143,T8100,S4B-EH,CC2A33,P40250141,CC2D235,CC2D355,T7001,PT1000,T2072,T7001D,CC2D25,T9602-3-A,T8042I0-10V,CC2D23,P40250156,T8041,T8100-R,P40250151,T8042,P40250150,T9602-3-D,NTC10K,CC2025,7000,T9602-3-D-1,CC2D35,T9602,CC2D33,ADT,NTC15K,T8200,CC2D335,CHIPCAP 2,NTC10K-II,T2090,T1551,T1552,MPNT3D03750M4,NTC20K,T2007,T8700-D,T8700-E,T8100,T2080,T8100-EC,P40250109,PA0250118,T8100-E-D-GN-5P-R,PA0250115,T1505,P40254275,P40254276,P40254277,P40250189,P40250186,P40250184,P40250185,T8300,P40250182,P40250183,P40250181,AAS-53,8000,PT100,T7001SK,P40250119,NTC10K-A,AOT,P40250117,T9602-5-A,P40250113,P40250114,P40250111,P40250112,DC95F103W,T2076NG,P40250110,P40250193,T9602-5-D,T8001,P40250191,7001D,P40250192,T8002,T9602-5-D-1,MPNV12R30M 16004616,B4B-EH-A,P40250190,T8041-5VI0-5V,RS485,NTC10K-III
Amphenol Sensors(安费诺) 汽车传感器选型指南
目录- 汽车传感器解决方案介绍 车厢空气质量系列传感器 排放处理系列传感器 新能源汽车传感器应用 测量汽车应用中最为关键的参数
型号- SM-UART-01L,PT200,T6703,TPMS,DPS,G-CAP2,SM-UART-01D,A2103,NPI-19,T6713,A-2102,EGR,A-2103,NPP-301,GE-1935,A-2121,ZTP,DPF,SM-UART-01L+,SM-PWM-01C,NPX1
NPA系列|压力传感器应用指南
描述- 本指南详细介绍了Amphenol Advanced Sensors的NPA系列压力传感器的应用。内容涵盖传感器的一般描述、输出特性、模拟和数字输出选项、未校准版本、封装尺寸、压力端口连接、PCB焊盘布局、焊接和设备标识。指南重点介绍了传感器的压力测量功能、输出特性、数字输出协议、诊断功能和睡眠模式,为用户提供了全面的应用指导。
型号- NPA SERIES,NPA-600 SERIES,NPA-601 SERIES,NPA-100 SERIES,NPA-500 SERIES,NPA-100,NPA-500M-001D,NPA-500,NPA-730,NPA-730 SERIES,NPA-300,NPA TYPES,NPA-600,NPA-700,NPA-601,NPA
Amphenol Sensors(安费诺) 医疗传感器选型指南
目录- NPA贴片式压力传感器系列 NTC AB6 型 "SC/MC"系列专为医疗设汁 MA100系列 ZTP-148SR系列 ZTP-101T系列 NPC-100系列一次性医疗压力传感器 NPC-1210系列 NPG-1220系列中压传感器 NPI-12卫生型压力传感器、不锈钢介质隔离压力传感器 NPI-15系列电流激励高压、介质隔离压力传感器 NPI-15VC系列电压激励、高压、介质隔离压力传感器 NPI-19系列电流激励、中压、介质隔离压力传感器 NPI-19系列电压激励、中压、介质隔离压力传感器 NPP-301系列贴片封装压力传感器
型号- NPP-301B-700AT,NPC-1001000,NPI-12-101G,MC65F103C,NPP-301A-100AT,NPI-19X-YYYZZ,NPI-15X-YYYZZ,NPI-19J-XXX,B35,ZTP-148SR,NPI-19A-XXX,MC65F103A,NPP-301A-200A,MC65F103B,AB6,NPA-300,NPI-19H-XXX,NPA-700,AB6E8,B43,NPP-301B-200A,NPI-12,NPI-19X-XXXXV,NPI-15,SC30F103W,NPP系列,NPP-301B-200AT,SC30F103V,MA100BF103C,NPI-19,SC30F103A,SC,MA100BF103B,MA100BF103A,NPI-15B-XXX,MA100GG232C,NPI-15C-C00903,NNP301B,NNP301A,MA100GG103CN,NPP-301B-700A,BR16,BR14,BR11,NPC-1210XXXX-YZ,ZTP-101T,NPC-100T,MA100GG103BN,MA100,NPP-301A-100A,NPC-100,NPI-19A-C01864,BR23,P20,P25,AB6B4,MC65F232A,MC,AB6B2,MC系列,NPI-19A-002GV,MA100GG103AN,AB6A8-BR16KA103N,NPI-15VC,NPP-301A-200AT,P30,BR32,NPA-100,NPC-1220XXXX-YZ,NPA-500,SC50F103W,NPP-301B-100A,NPA,NPP-301B-100AT,MC65F502B,NPI-15A-XXX,B05,B07,SC30Y103W,NPI-15J-XXX,NPP,NPP-301A-700A,BR42,NPP-301,MA100GG103B,NPI-19B-XXX,NPI-12-101GH,MA100GG103A,MC65G503B,MA100GG103C,NPC-1220,NPP-301A-700AT,B10,NPI-15H-XXX,B14,NPI-15XXXXXX,NTC AB6,BR55,NPC-1210,SC系列
Amphenol Sensors(安费诺)/Nova Sensor 压力传感器及敏感元件选型指南
目录- P1300低压硅压力传感器芯片 P1302低压硅压力传感器芯片 P111中压硅压力传感器芯片 P883(5~15000 PSI)硅压力传感器芯片 P1602硅压力传感器芯片 P122 高压硅压力传感器芯片 NPC-100系列一次性医疗压力传感器 NPC-1210系列低压系列固态压力传感器 NPC-1220系列中压传感器 NPH系列固态压力传感器(中低压) NPI-12卫生型压力传感器、不锈钢介质隔离压力传感器 NPI-15VC系列电压激励、高压、介质隔离压力传感器 NPI-15系列电流激励高压、介质隔离压力传感器 NPI-19系列电压激励、中压、介质隔离压力传感器 NPI-19系列电流激励、中压、介质隔离压力传感器 NPI-19低压不锈钢介质隔离压力传感器 NPP-301系列贴片封装压力传感器 NPA贴片式压力传感器 NPR-101系列复杂介质压力传感器 Modus T系列微差压力传感器 压力变送器IPT1000/2000系列
型号- NPP-301B-700AT,IPT1000,51243,51245,51003,51244,NPP-301A-100AT,51005,51367,51004,51007,51006,51009,NPI-19X-YYYZZ,51008,51407,51406,NPI-15X-YYYZZ,51409,51408,NPP-301A-200A,NPH-XYYY-ZZ,51010,51012,51254,51011,51253,51013,NPA-300,NPR-101,51137,NPA-700,NPH系列,NPP-301B-200A,NPI-12,NPI-19X-XXXXV,P1602,NPI-15,NPP-301B-200AT,NPI-19,NPA100,NPI-15X-XXXXX,51142,MODUS T,51421,NPI-15X-XXXXXX,51304,51303,NPI-15C-C00903,NPP-301B-700A,51391,NPC-1210XXXX-YZ,51151,51393,51392,51395,NPI-19A-031GH,T10,51394,51031,51397,51399,51313,51433,51314,NPC-100T,51317,51318,NPP-301A-100A,P1302,NPC-100,P1300,51041,51283,NPI-19A-021GH,51282,T20,51045,51322,51046,51445,51324,51444,51323,51326,51325,51328,51327,51329,NPI-19A-002GV,NPI-15VC,NPP-301A-200AT,IPT2000,T30,NPC-1220XXXX-YZ,51298,51331,NPA-500,51330,51333,51299,51332,51335,51334,NPI-19X-XXXXXV,51337,51336,51339,51338,NPP-301B-100A,NPP-301B-100AT,NPA,T系列,P122,P883,NPH,NPI-19A-C01841,NPI-19A-C01840,NPP-301A-700A,T40,51340,NPP-301,51342,51187,51341,NPI-12-101GH,NPI-1,NPC-1220,NPP-301A-700AT,P111,51076,NPC-1210,51114
Keeping Cool with Data Center Temperature Sensors
Data center temperature sensors are the eyes and ears of your climate control system. These tiny devices provide real-time data on temperature and some insight into potential humidity levels throughout your facility. They come in various forms, each suited to different applications.
电子商城
品牌:AMPHENOL SENSORS
品类:Surface Mount Pressure Sensors
价格:¥97.5000
现货: 51
品牌:AMPHENOL SENSORS
品类:Air Quality Sensors IR LED Dust Sensor
价格:¥40.5000
现货: 35
品牌:AMPHENOL SENSORS
品类:Board Mount Pressure Sensors
价格:¥253.8839
现货: 30
品牌:AMPHENOL SENSORS
品类:Board Mount Pressure Sensors
价格:¥253.8839
现货: 25
品牌:AMPHENOL SENSORS
品类:Board Mount Pressure Sensors
价格:¥227.5314
现货: 25
品牌:AMPHENOL SENSORS
品类:Low Pressure Compact Sensors
价格:¥125.9778
现货: 25
品牌:AMPHENOL SENSORS
品类:Board Mount Pressure Sensors
价格:¥227.5314
现货: 25
品牌:AMPHENOL SENSORS
品类:Board Mount Pressure Sensors
价格:¥227.5314
现货: 25
品牌:AMPHENOL SENSORS
品类:Board Mount Pressure Sensors
价格:¥227.5314
现货: 25
现货市场
服务
可定制板装式压力传感器支持产品量程从5inch水柱到100 psi气压;数字输出压力传感器压力范围0.5~60inH2O,温度补偿范围-20~85ºС;模拟和数字低压传感器可以直接与微控制器通信,具备多种小型SIP和DIP封装可选择。
提交需求>
可定制温度范围-230℃~1150℃、精度可达±0.1°C;支持NTC传感器、PTC传感器、数字式温度传感器、热电堆温度传感器的额定量程和输出/外形尺寸/工作温度范围等参数定制。
提交需求>
登录 | 立即注册
提交评论