Photon Automation and Coherent Teamwork Improves Precision Laser Welding

2024-08-17 COHERENT Official Website
adjustable ring mode fiber laser,ARM FL,ARM fiber laser,laser adjustable ring mode fiber laser,ARM FL,ARM fiber laser,laser adjustable ring mode fiber laser,ARM FL,ARM fiber laser,laser adjustable ring mode fiber laser,ARM FL,ARM fiber laser,laser

Tight coordination between the Photon Automation and COHERENT applications teams enabled rapid development of an advanced laser welding process.



Photon Automation, Inc. (Greenfield, Indiana, USA) has been designing and developing automated systems for manufacturing since 2000. The company’s ability to consistently deliver solutions that increase productivity and reduce costs has enabled them to build a highly successful business. Today they service customers in diverse areas including energy storage, medical devices, consumer products, communications, automotive manufacturing, and aerospace.  


Photon Automation currently occupies 250,000 ft² of space, including applications development laboratories, engineering offices, a machine shop, and manufacturing space. In addition to designing and building custom automation systems, they also provide applications development services, prototype manufacturing and testing, and design for manufacturability (DFM) consulting. Photon Automation products range from semi-automated, stand-alone tools or fixtures to fully automated production lines.


In 2023 Photon Automation was asked to bid on a welding system for joining busbars to battery terminals for an energy storage application. Their requestor had already worked with another prototyping house on a laser welding system, but they weren’t entirely happy with the results. 



In particular, the welding process the end user had was producing a significant amount of spatter. They knew that this spatter typically correlated with weld porosity and poor weld strength. Based on prior positive experiences with Photon Automation, they believed the company would be able to identify the source of the problem and provide the welding technology necessary to eliminate it. And they were confident that Photon Automation could accomplish this all in a timely fashion.  

 

Identifying a Successful Process

Photon Automation began by reaching out to Coherent Labs in Plymouth, Michigan. They asked us to do some testing on the customer-supplied samples using our adjustable ring mode fiber laser (ARM FL). Their prior experience with this laser had shown them that its unique combination of back-reflection immunity, excellent beam quality, and advanced capability for closed-loop power control would enable it to successfully perform this type of difficult weld. 


This testing confirmed the capability of the ARM FL, in particular, that it provided spatial and temporal control over how laser power is delivered to eliminate the spatter issue. It also showed that this specific process would require 8 kW of power because of the part thicknesses involved. “We weren’t surprised at the results from the ARM FL,” notes William Huffman, CEO, of Photon Automation. “It has proven itself to us in the past as very capable of tackling these kinds of very demanding welding processes.” 



Coherent also performed pull tests of the welds to measure their mechanical strength. These confirmed that the ARM fiber laser process delivered the required joint quality. Plus, Photon Automation used its own CT scanner to obtain detailed views of the weld cross sections. This is necessary because a weld that looks cosmetically good from the surface may be still hiding defects underneath. Polished and etched cross-sections may or may not show porosity or cracks that could exist in front of or behind the sample, whereas CT scans show the entire weld in three dimensions.


The CT scans of the ARM laser welds confirmed what Photon Automation had hoped. Namely that weld porosity had been reduced, and that this correlated with a lower concentration of stress risers in the weld. Stress risers are features that cause a concentration of stress in a localized area of a weld joint. These stress concentrations can significantly increase the likelihood of failure, such as cracking or fatigue, under load or vibration. 


Photon Automation presented the weld comparisons, including the CT scans, to their customer. While there were multiple factors involved in the customer’s decision-making, Photon Automation credits the demonstrated weld quality as the key determining factor in why they won the contract to produce the welding systems. 

 

Coming up to Speed

While the initial application testing proved that the ARM fiber laser could deliver the required process, Photon Automation understood that there was still quite a bit of work involved in developing a production ready tool around it. 


One of the central issues was creating a control system that could take full advantage of the inherent speed capability and other key features of the laser. In particular, the ability of the ARM fiber laser to very rapidly and independently change power in the center and ring beams offers distinct advantages over other lasers that lack this ability. Fully utilizing this capability promised to improve process quality and also deliver a throughput rate that would meet their customer’s needs. 


But this challenge played straight into the core competency at Photon Automation. Specifically, this is the ability to combine laser sources, beam delivery systems, motion control, and part handling robotics with the level of precision and control needed to perform the most difficult welding tasks. These are welds that involve factors like high-value materials, high-performance joint requirements, or widely dissimilar materials. All of these conditions reduce the process window, necessitating this higher degree of control.  


The out-of-the-box control system Photon Automation was presented with at the time had a latency in the 8 ms to 12 ms range. This delay between when the controller initiates a power change and when the laser responds to that change caused significant issues when attempting to weld conductors onto lithium-ion battery cells. This was because the scanner was capable of moving the beam on the work surface much faster than the power could be changed in the laser. 


Faced with the latency limitations of the existing control hardware, the Photon software team needed to include dwell time within their code to compensate for these indeterminate delays. Photon Automation engineer Michael Dupont knew that a more elegant solution for this impediment would be to use a dedicated signal processor instead of ‘cheating’ the code with artificial delays to compensate for the laggy hardware. 


Michael demonstrated his invention to the Photon management team with a wire-wrapped microprocessor-based control board that he put together. This was the start of Photon Automation’s WonderBoard™, a high-speed, dedicated control platform with the sole purpose of providing discrete, independent control of the laser center and ring power in conjunction with the spatial position of the laser on the workpiece via custom laser path planning software.


Working in close consultation with Coherent gave Photon Automation access to our in-depth knowledge of the exact workings of the ARM fiber laser. This enabled them to fully optimize the performance of their new controller. Using the WonderBoard™ with the Coherent ARM fiber laser reduced the latency in their overall system (controller, scanner, and laser) down to 2.5 µs – an improvement of nearly 5,000X! The combination of this responsive controller, beam delivery system, and part handling robotics from Photon Automation, plus the Coherent ARM fiber laser, formed the heart of the welding system they delivered.


“We knew before we started this project that the Coherent ARM fiber laser had unique capabilities and offered some big advantages for this kind of demanding welding application,” notes William Huffman, CEO, Photon Automation. “But equally important to the success of this project was the level of cooperation and coordination between our two applications teams. Our technical people are in continual contact and work together very closely. We get an immediate response when we have a question or need a test from the Coherent applications lab. And we’ll help Coherent out, too, because we have different equipment and can perform tests they don’t have direct access to, including the use of Photon’s CT scanning capability. This arrangement allows us to get the absolute best performance possible from the laser, and it gets us to that point very fast. That enables us to keep our customers happy and maintain a competitive edge.” 

授权代理商:世强先进(深圳)科技股份有限公司
技术资料,数据手册,3D模型库,原理图,PCB封装文件,选型指南来源平台:世强硬创平台www.sekorm.com
现货商城,价格查询,交期查询,订货,现货采购,在线购买,样品申请渠道:世强硬创平台电子商城www.sekorm.com/supply/
概念,方案,设计,选型,BOM优化,FAE技术支持,样品,加工定制,测试,量产供应服务提供:世强硬创平台www.sekorm.com
集成电路,电子元件,电子材料,电气自动化,电机,仪器全品类供应:世强硬创平台www.sekorm.com
  • +1 赞 0
  • 收藏
  • 评论 0

本文由雪飘梦飞转载自COHERENT Official Website,原文标题为:PHOTON AUTOMATION: TEAMWORK IMPROVES PRECISION LASER WELDING,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

评论

   |   

提交评论

全部评论(0

暂无评论

相关推荐

Caltech: Unlocking Quantum Mysteries

Dr. David Hsieh‘s research at Caltech utilizes the Coherent Astrella laser to study quantum materials, particularly strongly correlated electron systems like Mott insulators. His work has led to the discovery of Hubbard excitons, contributing significantly to quantum mechanics and the understanding of exotic quantum phenomena. The laser‘s precision and reliability have been crucial for these groundbreaking experiments.

应用方案    发布时间 : 2024-10-26

UV Lasers from Coherent Enable Detection of Minute Defects on Semiconductor Wafers

UV lasers from Coherent enable detection of minute defects on semiconductor wafers which is key to maximizing yields and lowering cost.

应用方案    发布时间 : 2024-10-24

Ytterbium Fiber Lasers Enable Cutting-Edge Neuroscience

The latest generation of ytterbium-based lasers now provides full independent control of both the tunable beam and the fixed wavelength beam, before they leave the laser head, i.e., with guaranteed pulse width and TEM00 beam quality (M2 < 1.1).

应用方案    发布时间 : 2024-10-22

应用笔记或设计指南  -  COHERENT  - Rev.A  - 2011-11-10 PDF 英文 下载

数据手册  -  COHERENT  - 2023/10/20 PDF 英文 下载

成功案例  -  COHERENT  - 2021/5/24 PDF 英文 下载

Coherent Introduces Industry-first Pump Laser Diode with Record 65W Power

Coherent Corp, a leader in high-power semiconductor lasers, announced the introduction of its next-generation pump laser diode, with 65W of output power for fiber lasers in industrial and consumer applications.

原厂动态    发布时间 : 2023-08-03

HighLight FL-ARM High-Power Adjustable Ring Mode (ARM) Fiber Lasers with Beam Management

型号- FL7500-ARM,FL4000-ARM,FL-ARM,FL8000-ARM,FL-ARM SERIES,FL2000-ARM,FL6000-ARM,FL10000-ARM

数据手册  -  COHERENT  - 2023/6/21 PDF 英文 下载

COHERENT LASER FRAMEWORK可管理所有系统功能的统一软件平台,提高医疗器械制造效率

今天在医疗器械制造中保持竞争力的关键在于生产力。从运营中获得更多 – 更高的吞吐量、更少的停机时间、更高的质量和更少的错误。激光器提供了所有这些优势 – 现在,Laser FrameWork 使它们比以往任何时候都更易于使用、更易于集成且更可靠。这就是生产力。

产品    发布时间 : 2024-10-28

OBIS LX/LS Lasers for Plug-and-Play Simplicity CW Solid State Lasers

型号- OBIS FAMILY,OBIS 473LX,OBIS 413LX,OBIS 514LX,OBIS 685LX,OBIS 640LX,OBIS 660LX,OBIS 637LX,OBIS 375LX,OBIS LX,OBIS 505LS,OBIS 522LX,OBIS 980LX,OBIS,OBIS 808LX,OBIS 405LX,OBIS 561LS,OBIS LS,OBIS 730LX,OBIS 750LX,OBIS 488LS,OBIS 422LX,OBIS 505LX,OBIS 488LX,OBIS 445LX,OBIS 633LX,OBIS 690LX,OBIS 647LX,OBIS 785LX,OBIS 458LX,OBIS 514LS,OBIS 552LS,OBIS 594LS,OBIS 532LS

数据手册  -  COHERENT  - 2023/11/30 PDF 英文 下载

Coherent Introduces New Laser Welding Head With Tactile Seam-Tracking Technology for Electric Vehicle Manufacturing

Coherent Corp., a leader in advanced laser processing solutions, today introduced HIGHtactile, a new laser welding head with tactile seam-tracking technology ideal for electric vehicle (EV) manufacturing applications.

产品    发布时间 : 2023-08-10

Coherent Introduced 2x1000mW Dual-Chip Pump Laser Module for Optical Amplification in Optical Networks

Coherent, a leader in pump laser technology for erbium-doped fiber amplifiers (EDFAs) deployed in optical networks, today announced the industry’s first dual-chip pump laser module with up to 1000mW of output power per fiber in a 10-pin butterfly package.

原厂动态    发布时间 : 2023-09-05

Diamond J-3RF Excited OEM Industrial CO2 Laser

型号- DIAMOND J-3-10.6,DIAMOND J-3,DIAMOND J-3-9.4,DIAMOND J-3-10.2,DIAMOND J-3 SERIES

数据手册  -  COHERENT  - 2024/5/2 PDF 英文 下载

白皮书  -  COHERENT  - 2021/5/24 PDF 英文 下载

Coherent Introduces New HIGHmotion 2D Laser Processing Head Optimized for Deep Copper Welds Over Wide Working Areas in EV Applications

Coherent, a leader in advanced laser processing solutions, today introduced its new HIGHmotion 2D laser processing head that is rated for 8 kW beam delivery and which has been optimized for deep copper welds over wide working areas in electric vehicle (EV) manufacturing applications.

新产品    发布时间 : 2023-08-07

展开更多

电子商城

查看更多

品牌:COHERENT

品类:Tunable Laser

价格:

现货: 0

品牌:COHERENT

品类:LASER DIODE MODULE

价格:

现货: 0

品牌:COHERENT

品类:Tunable Laser

价格:

现货: 0

品牌:COHERENT

品类:Tunable Laser

价格:

现货: 0

品牌:COHERENT

品类:Diode Laser Modules

价格:

现货: 0

品牌:SILICON LABS

品类:8位MCU

价格:¥5.8534

现货: 73,120

品牌:ROHM

品类:Laser Diode

价格:¥18.5537

现货: 65,028

品牌:ROHM

品类:Laser Diode

价格:¥29.3050

现货: 60,263

品牌:SILICON LABS

品类:8位MCU

价格:¥8.1764

现货: 22,497

品牌:ROHM

品类:Laser Diode

价格:¥29.4872

现货: 16,237

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

现货市场

查看更多

品牌:SEMTECH

品类:激光驱动器

价格:¥4.3000

现货:459,756

品牌:SEMTECH

品类:激光驱动器

价格:¥6.4000

现货:246,934

品牌:Maxim

品类:激光驱动器

价格:¥15.2550

现货:49,505

品牌:TI

品类:IC

价格:¥9.0000

现货:27,463

品牌:TI

品类:激光驱动器

价格:¥43.0000

现货:18,606

品牌:SILICON LABS

品类:8位MCU

价格:¥4.9000

现货:12,000

品牌:Maxim

品类:激光驱动器

价格:¥37.0000

现货:8,760

品牌:SEMTECH

品类:激光驱动器

价格:¥5.0000

现货:2,722

品牌:Maxim

品类:激光驱动器

价格:¥16.8500

现货:2,390

品牌:SEMTECH

品类:激光驱动器

价格:¥32.0000

现货:1,960

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

服务

查看更多

无线充电传输效率测试

配备KEYSIGHT网络分析仪,可测量无线充电系统发射机/接收机线圈的阻抗,电感L、电阻R、电感C以及品质因数Q,仿真不同充电负载阻抗下的无线充电传输效率。支持到场/视频直播测试,资深专家全程指导。

实验室地址: 深圳 提交需求>

无线位移传感器量程定制

可定制无线位移传感器量程范围10~600mm,采用了无线传输方式,可远程自动实时检(监)测位移量值,准确度级别(级):0.2、0.5;内置模块:无线传输模块、供电模块;传输距离L(m):可视距离1000 (Zigbee、 LORA)。

最小起订量: 1pcs 提交需求>

查看更多

授权代理品牌:接插件及结构件

查看更多

授权代理品牌:部件、组件及配件

查看更多

授权代理品牌:电源及模块

查看更多

授权代理品牌:电子材料

查看更多

授权代理品牌:仪器仪表及测试配组件

查看更多

授权代理品牌:电工工具及材料

查看更多

授权代理品牌:机械电子元件

查看更多

授权代理品牌:加工与定制

世强和原厂的技术专家将在一个工作日内解答,帮助您快速完成研发及采购。
我要提问

954668/400-830-1766(工作日 9:00-18:00)

service@sekorm.com

研发客服
商务客服
服务热线

联系我们

954668/400-830-1766(工作日 9:00-18:00)

service@sekorm.com

投诉与建议

E-mail:claim@sekorm.com

商务合作

E-mail:contact@sekorm.com

收藏
收藏当前页面