GreenWaves Technologies Partners with Open-Silicon to develop Industry’s First IoT Processor Based on PULP and RISC-V
Open-Silicon tapped for ultra-low power physical design and CPU core hardening experience
Milpitas, CA – March 13, 2017 – Open-Silicon, a system-optimized ASIC solution provider, today announced it was selected by GREENWAVES Technologies to develop GAP8, the industry’s first IoT Processor. GAP8 is built on the open source Parallel Ultra Low Power (PULP) and RISC-V ISA projects. Open-Silicon is providing GreenWaves Technologies with the complete RTL-to-physical design custom SoC implementation that is required to transform this smart IoT concept into working silicon in volume production.
Headquartered near Grenoble, France, GreenWaves Technologies designs GAP8, the industry’s first IoT processor. Based on the open-source PULP project, developed at the University of Bologna and ETH Zurich, the GAP8 SoC is an ultra-low power smart IoT solution that can analyze and classify rich data produced by image, sound and motion sensors. It can function for several years on a single battery and supports software for a wide variety of IoT wireless communication standards. Its 1+8 extended RISC-V ISA cores, combined with a convolutional neural network engine, provide very high processing power that’s uniquely energy efficient and easy to program.
“Open-Silicon’s proven experience in ultra-low power physical design targeted for IoT products will be instrumental in the successful development of the fully optimized GAP8 SoC,” said Loic Lietar, Co-Founder and CEO of GreenWaves Technologies. “FPGA demos of GAP8 are available to customers today, and GAP8 samples will be available in mid-2017.”
“Meeting ultra-low power challenges requires the successful integration of a new class of silicon IPs from several IP vendors, as well as efficient CPU hardening and advanced physical implementation techniques,” said Anam Haque, Vice President of Silicon Engineering for Open-Silicon. “We are implementing GAP8 in the industry-proven TSMC 55nm LP process node, which is optimized for performance at low power and cost.”
About GreenWaves Technologies
GreenWaves Technologies is a fabless semiconductor start-up that develops GAP8, the industry’s first IoT processor. Thanks to its extreme energy efficiency, GAP8 enables smart IoT battery-powered applications, such as image classification, people and objects counting and many more. To learn more, visit www.greenwaves-technologies.com
About Open-Silicon
Open-Silicon transforms ideas into system-optimized ASIC solutions within the time-to-market parameters desired by customers. The company enhances the value of customers’ products by innovating at every stage of design — architecture, logic, physical, system, software, IP — and then continues to partner to deliver fully tested silicon and platforms. Open-Silicon applies an open business model that enables the company to uniquely choose best-in-industry IP, design methodologies, tools, software, packaging, manufacturing and test capabilities. The company has partnered with over 150 companies, ranging from large semiconductor and systems manufacturers to high-profile start-ups, and has successfully completed 300+ designs and shipped over 125 million ASICs to date. Privately held, Open-Silicon employs over 250 people in Silicon Valley and around the world. To learn more, visit www.open-silicon.com
- |
- +1 赞 0
- 收藏
- 评论 0
本文由JWM转载自GREENWAVES Official Website,原文标题为:GreenWaves Technologies Partners with Open-Silicon to develop Industry’s First IoT Processor Based on PULP and RISC-V,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
相关推荐
GreenWaves’ GAP9 Hearables Platform Enables State-of-the-art Features Such as Scene-aware Active Noise Cancellation and Neural network-based Noise Reduction
GreenWaves’ GAP9 hearables platform enables state-of-the-art features such as scene-aware active noise cancellation and neural network-based noise reduction with no compromise in area, cost or energy.
产品 发布时间 : 2024-08-15
GAP8 Performance Versus ARM M7 on Embedded CNNs
ARM recently published a new CMSIS library for embedded convolutional neural networks (CNNs) CMSIS-NN. Firstly, it was great to see ARM supporting the market that GreenWaves and GAP8 are focused on. We particularly liked their statement that: “Neural Networks are becoming increasingly popular in always-on IoT edge devices performing data analytics right at the source, reducing latency as well as energy consumption for data communication.”
产品 发布时间 : 2024-09-10
GreenWaves Technologies Licenses Intrinsic ID Hardware Root of Trust for RISC-V AI Application Processor
GreenWaves’ pioneering RISC-V-based IoT application processors enable the cost-effective development, deployment and autonomous operation of intelligent, battery-operated sensing devices that capture, analyze, classify and act on the fusion of rich data sources such as images, sounds or vibrations at the very edge of the network.
产品 发布时间 : 2024-08-20
纳芯微电子(NOVOSENSE)信号感知芯片/隔离与接口芯片/驱动与采样芯片选型指南(英文)
描述- NOVOSENSE Microelectronics (NOVOSENSE, SSE Stock Code 688052) is a highly robust & reliable analog and mixed signal Chip company. Since its establishment in 2013, the company has been focusing on sensor, signal chain, and power management, providing comprehensive semiconductor products and solutions, which are widely used in automotive, industrial, information communication and consumer electronic
型号- NSI6602NA-DLAR,NSL21924-Q1,NCA1051,NSI6602VC-Q1SWR,NSI6622NB-Q1SWKR,NCA1051N-Q1SPR,NSM2017,NSI6602NC-Q1SWR,NSM2019,NSM211X,NSI6602A-Q1SWKR,NSM2013,NIRS485,NSIP83086,NSI6622VB-Q1SPOR,NSM2015,NSM2016,NSC9260X,NSHT30-CLAR,NSD1624-Q1SPR,NSM2011,NSM2012,NSI8231,NSI8230,NSD2621C-DQAGR,NSR33XXX,NSC9262,NSC9260,NSI6801LC-DDBR,NSI6602VD-Q1SWKR,NSC9264,NSP1830,NSG65N15K-DQAFR,NST112X,NCA1042C-Q1DNR,NCA1042,NCA1042A-Q1DNHR,NSI8220NX,NSI6622A-DSWKR,NSI6801TB-DDBR,NSD1624-DSPKR,NSP1833,NST7719,NSP1831,NSP1832,NSM1052,NSM1053,NSI8222,NSA2860X,NSI8221,NSI8220,NSE5701 SERIES,NSI6642C-DSPNR,NSM1051,NSI822XC,NSIP8921W1-DSWR,NSI6602MNF-Q1SWTR,NSD11416-Q1STBR,NSI6602VB-Q1SPNR,NCA3491,NSI6642A-DLAR,NSI6602NB-Q1SWKR,NSA2860_TSSOP,NSD1026V,NSI8221CX-DSWR,NSE34050,NCA1043B-Q1DNKR,NCA1044N-Q1SPR,NSIP8944W1-DSWR,NSL21912-Q1,NSM201X,NSI6622A-Q1SPNR,NCA1051N-Q1,NSM2031,NSI6602MNB-Q1SWTR,NSD7310A-DHSPR,NSM2032,NCA1145-Q1SPKR,NSM2033,NSI8210,NSM2034,NST112-DSTR,NSI6601MB-DSPR,NSD1015T,NSI8266CX-DSWR,NSI6602VD-DSWKR,NSI8222CX-DSPR,NSM105X SERIES,NSD1015MT-DSPR,NSC2860X_DQNR,NCA1021S-Q1SPR,NSI8262CX-DSWR,NSPGS2,NCA34XX,NCA3485,NCA1051C,NSI68011C-DSWAR,NSI8221NX,NSI6602NC-DLAMR,NST1002,NSPGS5,NSM211X SERIES,NSI6602VC-DLAMR,NST1001,NCA1042C-Q1,NSI6602A-DLAR,NSI6602ND-DSWKR,NSM105X,NSD16241-Q1SPR,NSI1303M0X,NSM3011,NSPAS3M SERIES,NSI8240CX-DSPR,NSD7312-Q1,NSM3013,NSM3012,NSA2860_SSOP16,NSA2862X,NSI6642B-DSWKR,NSM1071,NSM1072,NSI823XC,NSI6642A-DLAMR,NSD5604N,NSI319X,NSI6642D-DLAR,NSI8100NC,NSI6602B-Q1SWR,NSI6622ND-DSPNR,NSI6601B-DSPR,NSA2860X-QQNR,NSI8210NX,NSI6642D-DSWKR,NSI6602MF-DSWTR,NSD5604E,NIRSP31,NSI6602MNB-DSWTR,NST175,NST1075,NSI6602A-DSPNR,NCA9617A SERIES,NSI68010B-Q1SWAR,NSI1312D,NSI6642B-DSWR,NSI8222NX,NSI6601C-DSPR,NSI6622NB-DLAR,NSIP8841W1-DSWR,NSP1631,NSI8221CX-DSWVR,NSP1632,NSP1630,NSD56008-Q1HTSPR,NSI6622C-DLAR,NSM301X,NSM107X,NSI824XC,NSI6602VA-Q1SPNR,NSI6602ND-DLAR,NSI6801C-DSWFR,NSD3604-Q1,NCA3176,NSI6801MB-DSWVR,NSD3608-Q1QAJR,NSI1312S,NSI6622VB-Q1SWR,NSI6622B-Q1SPNR,NSD5604N-DHTSPR,NSD1624-DLAJR,NSI68011C-Q1SWAR,NSI6602VA-DLAMR,NSI6602NA-DLAMR,NSI6602NB-DSWR,NSD5604E-DHTSTR,NSR35XXX,NSI6622NB-Q1SWR,NSD5604N-Q1HTSPR,NSD1224X,NSI6602C-Q1SPNR,NSI8100W,NSI6622NA-DSPNR,NSIP8844W1-DSWR,NSI6622NB-DSWKR,NSE5702,NSE5701,NSI8100N,NSP183X,NCA1044-Q1DNR,NSI6622NC-DLAR,NCA1021S-Q1DNR,NSI6622VB-Q1SPNR,NCA1044N-Q1DNR,NSD16241-DSPKR,NSI3190,NSI6602VD-DSWR,NPC060N120A-QTOOT,NSI6622NA-Q1SWKR,NSE34050Q,NSD1224LA-DAFR,NSI8241SX,NSI6622NA-Q1SWR,NSI6622NC-Q1SPNR,NSI8231CX-DSWR,NSI1052-DSWR,NSPGL1 SERIES,NSI6622VA-Q1SPOR,NSA2860X_QQNR,NSI6801B-DSWFR,NSI6602B-Q1SPNR,NSI6601WC-DSWVR,NSI6651ASC-Q1SWR,NSC6272,NSI8263CX-DSWR,NSD8310-Q1HTSXR,NSC6273,NSREF31XX,NSI6622ND-DSWR,NSI6622NC-DSPNR,NSI6602NB-DLAR,NSI6602NB-DSPNR,NSA5312,NSI6622VC-Q1SWKR,NSPGL1,NSI6602A-Q1SWR,NSI6622NC-Q1SPOR,NSPGS2 SERIES,NSI6642C-DLAMR,NSR7808,NSI8220WX,NSI8266WX,NSD56008-Q1,NSD5604NE,NSI6622VA-Q1SPNR,NSI6602VB-DSWKR,NSL2161X-Q1,NCA1042BN-Q1SPR,NCA1057-Q1SPR,NCA1043B-Q1,NCA9511,NSI6602A-DSWR,NSC6280,NSI6602NA-Q1SWKR,NSD8308-Q1,NSI6602NC-DSWR,NSI6801TC-DDBR,NSI8242SX,NSI68515AC-DSWR,NSI6602B-DSWKR,NSI6602VD-DLAMR,NPCO60N120A-QTOIT,NSI8220CX-DSWVR,NSI6622NB-DSWR,NST235,NST117,NSI6602VC-DSWKR,NSI6602VC-Q1SWKR,NSI6602MB-DSWDR,NST118,NCA954X SERIES,NSD16242-Q1SPR,NCA9306 SERIES,NCA1044-Q1SPR,NSI6651,NSI6642B-DLAMR,NSI6602C-DSWKR,NSI8240NX,NSE34050 SERIES,NCA1057N-Q1DNR,NSP163X,NSI6602NC-DSPNR,NCA1042BN-Q1,NSI8221WX,NSI66X2,NSI6631ASC-Q1SWR,NSI6602MNC-DSWTR,NCA1042B-Q1DNR,NSI6642,NSI6601C-DSWVR,NIRS2X,NSI6601MB-DSWR,NSI8266SX,NSI6602NB-Q1SPOR,NCA34XX SERIES,NSI6602NC-Q1SPOR,NSD7310A,NSD8306-Q1,NSI6622ND-DLAMR,NSG65N15K,NSD12409-Q1SPR,NSE4250 SERIES,NCA1042CN-DSPR,NSI6602VA-DSWKR,NSI6642D-DLAMR,NCA1051N,NSI6642A-DSWKR,NIRS20N1-DSPR,NIRS21N1-DSPR,NSI6622NA-DLAR,NSC2860X-DQNR,NSI1042-DSWVR,NCA1042C-Q1SPR,NSI6602C-DSWR,NCA1057-Q1DNR,NSI8221CX-DSPR,NPD010N120A-DTOGT,NSI6602VB-Q1SWR,NSI8210CX-DSPR,NSD1026V-QISPR,NSD12416‒Q1,NSI1050-DDBR,NSI8241NX,NSI6602NC-Q1SPNR,NCA1042BN-Q1DNR,NSR10AXX SERIES,NST461,NSD2621X,NCA1042A-Q1,NSI8222WX,NST103,NSI1303D0X,NSI1303E2X,NSI6622A-Q1SWKR,NSI6602VC-DLAR,NSR31 SERIES,NSD16242-DSPR,NCA9555,NSI1052,NSC6360,NSC6362,NSI6622NB-DLAMR,NSI6651ALC-DSWR,NSC6364,NSI6602NA-DSPNR,NSI6622A-DLAR,NSI6622C-Q1SPNR,NCA1042C,NSI8220CX-DSWR,NSI6622C-DSPNR,NSA3166,NCA1042A-Q1SPR,NSIP8941W0-DSWR,NSI6642B-DLAR,NCA1042B-Q1,NSPGD1M,NSPAS3 SERIES,NSD1624-DSPR,NSI6602VA-Q1SWR,NSD1026V-Q1HMSR,NSI8242CX-DSWR,NSI6602MNC-Q1SWTR,NSL2163X-Q1,NST20,NIRS31,NSREF30XX,NCA9545,NSI6622NA-DLAMR,NSI1042,NSI6611,NCA9546,NSI6622B-DSPNR,NCA9306,NCA9548,NSD12416-Q1SPR,NSI6602MC-Q1SWTR,NSI8242NX,NSD8381-Q1QAIR,NSD8308-Q1HTSXR,NCA9617A,NST1001HA,NSI6602VA-DSWR,NSI1303D2X,NSI1050,NSI6601B-DSWVR,NSD7310-DHSPR,NSI6601,NSD731X-Q1,NCA1057N-Q1SPR,NSR7808GXX,NSD7312-Q1HSPR,NSI6602VB-DLAMR,NSI6602MNF-DSWTR,NSD1026V-DHMSR,NSA3300,NSI6602C-Q1SWKR,NSC2860X,NSD11416‒Q1,NSI6622NB-Q1SPNR,NCA1051N-DSPR,NSI6611ASC-DSWR,NSI22C11,NSI8230CX-DSWR,NSI6801B-DSPR,NSI6622A-DSPNR,NSD12409‒Q1,NSD5604NE-DHTSTR,NSPDSX SERI
The High-performance MCU MM32F52 Series featuring the Arm China “STAR-MC1” Processor Is Available for Order
The MM32F52 series is MindMotion announced the first family of high-performance MCUs featuring the Arm China “STAR-MC1” processor, which is based on the Arm-v8 architecture and offers approximately 20% higher performance per unit compared to Cortex-M3 and Cortex-M4.
新产品 发布时间 : 2023-06-07
Building a battery-operated smart camera in five steps using a multi-core microcontroller
In this post, we demonstrate how to train and deploy a deep learning model for image recognition on GAP8—the first generation of ultra-low power IoT application processors. Thanks to the power-optimized MCU-class architecture tailored for intensive AI workloads, GAP8 is the perfect solution when coupled with low-power cameras.
设计经验 发布时间 : 2024-11-12
Silicon Labs Advanced Automotive Radio Solutions
型号- SI47911,SI47977,SI4797X,SI47912,SI4795X,SI4690,SI4791X,SI4693,SI47981,SI4694,SI47982,SI4691,SI4692,SI47961,SI47962,SI4697,SI469X,SI4698,SI47942,SI47920,SI47987,SI47921,SI4696,SI4614,SI4699,SI4617,SI475X,SI4790X,SI4691X,SI4798X,SI47901,SI47923,SI4796X,SI47902,SI47925,SI4792X,SI47971,SI47972,SI47951,SI47952,SI47931,SI4799X,SI476X,SI462X
IoT Products —ARM Embedded Boards Company Profile
型号- RTD2556T,AVD-IOT-AC-A002M,AVD-IOT-AC-A003M,AVD-IOT-AC-A0005M,AVD-IOT-AA-A00XM,AVD-IOT-AC-A006M,RTD2660H,AVD-IOT-OA-A004L,AVD-IOT-AA-A004M,AVD-IOT-AA-A003M,AVD-IOT-OA-A002L,AVD-IOT-OA-C002M,AVD-IOT-OA001M,AVD-IOT-AA-C003M,AVD-IOT-AA-A00XX,RTD2513A,AVD-TV001-NN-003-A,AVD-IOT-OC-A001M,AVD-IOT-DC-A001
A 64mW DNN-based Visual Navigation Engine for Autonomous Nano-Drones
Really interesting paper by Daniele Palossi on using GAP8 to autonomously navigate a microdrone. This is a great example of porting a significant CNN to GAP8. Eric Flamand, GreenWave’s CTO assisted with the CNN model creation and use of the AutoTiler CNN generators.
应用方案 发布时间 : 2024-09-30
GreenWaves Technologies Won the Silver Golden Mousetrap Award 2019
Grenoble, France, Feb 5, 2019 – GreenWaves Technologies, a fabless semiconductor startup designing disruptive ultra-low-power embedded solutions for image, sound, and vibration artificial intelligence processing in sensing devices, announced today that it has been selected as a winner of a silver Golden Mousetrap award 2019.
原厂动态 发布时间 : 2024-08-13
Lynred and GreenWaves collaborate on New Occupancy Management Reference Platform for People Counting Sensor
GreenWaves and Lynred have collaborated on an open-source workspace management platform that allows quick deployment of sensors collecting accurate occupancy data. This platform combines Lynred‘s low-power IR sensors with GreenWaves‘ GAP8 processor to create battery-operated people counting devices, released under open source licenses. The platform ensures occupant anonymity using infrared technology and will be demonstrated at Embedded World in Nuremburg, Germany.
产品 发布时间 : 2024-09-07
GreenWaves Technologies Announced Availability of GAP8 Software Development Kit and GAPuino Development Board
GreenWaves’ pioneering GAP8 IoT Application Processor enables high-performing evaluation board and development kit.Grenoble, France and Santa Clara, Calif., May 22, 2018 – GreenWaves Technologies, a fabless semiconductor startup designing disruptive ultra-low power embedded solutions for image, sound and vibration AI processing in sensing devices, today announced the availability of its GAP8 Software Development Kit (SDK) and GAPuino Development Board. The GAPuino Boards are available for purchase here and the GAP8 SDK can be downloaded via GitHub.
产品 发布时间 : 2024-08-20
GAPMod 3.x GAP8 Centric Core Module with QSPI memories HARDWARE OVERVIEW
型号- GAPMOD3.0,GAP8,GAPMOD,GAPMOD 3.X
服务
支持 3Hz ~ 26.5GHz射频信号中心频率测试;9kHz ~ 3GHz频率范围内Wi-SUN、lora、zigbee、ble和Sub-G 灵敏度测量与测试,天线阻抗测量与匹配电路调试服务。支持到场/视频直播测试,资深专家全程指导。
实验室地址: 深圳/苏州 提交需求>
登录 | 立即注册
提交评论