A Comprehensive Comparison of Bluetooth and UWB (Ultra-Wideband) Technologies: A Guide to Precise Positioning
The rapid development of the indoor positioning industry and the quick expansion of the market are closely related to the diversification of positioning technologies. Common indoor positioning technologies include Bluetooth positioning, WiFi positioning, UWB (Ultra-Wideband) positioning, and ZigBee positioning, among others. In recent years, indoor navigation and positioning have become increasingly common, such as in underground parking lot vehicle location, smart guide systems in hospitals and nursing homes, and asset and item tracking in warehouses. Currently, the most common positioning technologies on the market are Bluetooth-based and UWB-based (Ultra-Wideband) technologies. Today, we will mainly introduce the differences between NiceRF's Bluetooth positioning and UWB positioning.
What are the differences between Bluetooth positioning and UWB positioning, and what are the main distinctions?
Supported wireless protocols
Bluetooth positioning is based on the standard Bluetooth 4.0-5.2 protocols UWB (Ultra-Wideband) positioning uses UWB wireless communication technology, which supports extremely wide bandwidth (typically over 500 MHz). This protocol is designed for high precision and low latency communication, providing reliable performance in complex environments.
UWB3000F27 and UWB3000F00 adhere to IEEE802.15.4-2015 and IEEE802.15.4z (BPRF mode) standards, while UWB650 follows the IEEE 802.15.4-2020 Standard protocol.
Positioning Principles and Accuracy
Bluetooth Positioning: Bluetooth positioning primarily relies on RSSI (Received Signal Strength Indicator) measurements to estimate the distance between devices by measuring signal strength. NiceRF uses more advanced positioning methods, employing Bluetooth Angle of Arrival (AoA) and Angle of Departure (AoD) technologies to enhance positioning accuracy. The accuracy of Bluetooth positioning typically ranges from 1 to 5 meters, depending on the environment, the number of devices, and their configuration.
UWB Positioning: UWB positioning typically uses ToF (Time of Flight) and TDoA (Time Difference of Arrival) measurement principles. It determines distance by accurately measuring the signal propagation time. UWB positioning accuracy can reach within 10 centimeters and, under ideal conditions, can even achieve accuracy of a few centimeters. This high precision makes UWB highly advantageous in applications requiring exact positioning.
UWB3000F27 and UWB3000F00: These modules are used for two-way long-distance ranging, TDoA (Time Difference of Arrival), and PDoA (Phase Difference of Arrival) systems, with positioning accuracy up to 10 centimeters.
UWB650 Module: This module integrates data communication, double-sided two-way ranging (DS-TWR), and three-point planar positioning functions using UWB technology. It supports communication distances of over 1 KM in open environments, making it suitable for long-distance ranging applications.
Anti-Interference Capability
Bluetooth Positioning: Bluetooth technology operates in the 2.4 GHz frequency band, making it susceptible to interference from other devices such as Wi-Fi and microwave ovens, which can affect positioning accuracy and stability.
NiceRF Bluetooth 5.2 protocol utilizes SILICON LABS' EFR32BG22C224 SOC chip. It features low power consumption, small size, long transmission distance, and strong anti-interference capabilities.
UWB Positioning: UWB technology uses an ultra-wide frequency band, offering strong anti-interference capabilities. It can provide stable positioning services in complex environments and is less likely to be affected by other wireless devices.
Data Transmission Speed
Bluetooth Positioning: Bluetooth Low Energy (BLE) is primarily designed for low power consumption, typically resulting in lower data transmission rates.
UWB Positioning: UWB technology not only provides high-precision positioning but also supports high data transmission rates, making it suitable for applications that require the simultaneous transmission of large amounts of data and precise location tracking.
Synchronization Mechanism
Bluetooth Positioning: Synchronization between Bluetooth devices typically relies on communication between the master and slave devices, which may introduce some time delay.
UWB Positioning: UWB uses a time synchronization mechanism, achieving precise synchronization between devices through high-precision timestamps of ultra-wideband signals.
Deployment Density
Bluetooth Positioning: Due to the accuracy of Bluetooth positioning being significantly affected by signal strength and interference, a high number of Bluetooth beacons (Beacons) are needed to cover the target area. This can lead to high-density deployment, especially in large or complex environments.
UWB Positioning: UWB positioning systems typically require less infrastructure to cover the same area because their high precision and strong anti-interference capabilities can provide stable positioning services over a larger range. This makes UWB systems more cost-effective for large-scale deployments.
Standby Duration
Bluetooth Positioning: A significant advantage of Bluetooth technology is its low power consumption. Devices using BLE can typically operate for extended periods, with standby times reaching several months or even years, making it well-suited for scenarios requiring long-term continuous operation.
UWB Positioning: UWB generally involves high power consumption for ultra-long-distance modules, making it less advantageous in terms of standby duration. UWB modules are better suited for high-precision positioning tasks of shorter duration.
Application Scenarios
Bluetooth Positioning: Widely used in indoor navigation, personnel tracking, asset management, smart homes, and customer behavior analysis in retail stores. This is mainly due to its low cost, low power consumption, and convenient deployment characteristics.
UWB Positioning: Due to its high precision and reliability, UWB is widely used in industrial automation, robotic navigation, drone positioning, sports and medical tracking, and high-precision asset management, among other fields requiring accurate positioning.
- |
- +1 赞 0
- 收藏
- 评论 0
本文由雪飘梦飞转载自G-NiceRF Official Website,原文标题为:A Comprehensive Comparison of Bluetooth and UWB (Ultra-Wideband) Technologies: A Guide to Precise Positioning,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
相关研发服务和供应服务
相关推荐
完美蓝色壁虎!SoC 开发套件二度测评
本文是一篇Bluetooth Smart 开发套件的测评,从开箱观感,产品功能,产品设计,产品使用方案等不同角度帮助消费者更加清晰、准确地了解蓝色壁虎这一开发套件。
技术探讨 发布时间 : 2019-07-30
Machine Learning Benchmarks Compare Energy Consumption
MLCommons recently conducted a round of its MLPerf Tiny 1.0 benchmarking, and Silicon Labs submitted its EFR32MG24 Multiprotocol Wireless System on Chip (SoC) for benchmarking. This compact development platform provides a simple, time-saving path for AI/ ML development.
技术探讨 发布时间 : 2022-12-09
【技术】多协议无线SoC解决方案白皮书:将智能互联照明带回家
何为 LED 灯泡增添智能连接性所需的要素,包括各种关键无线技术的比较,以及业界首创的多协议无线SoC解决方案。
技术探讨 发布时间 : 2019-09-04
【经验】EFR32xg SoC的Bin,S37,EBL和HEX目标文件有什么不同?
我们在使用Silicon Labs EFR32xg SoC开发 EmberZnet 时发现,当我们的固件编译结束之后可以得到各种各样的结果,包括 S37,GBL,HEX和BIN格式的目标文件,那么这些文件到底有什么区别的?在什么情况下我们要用到对应的文件呢?本文将具体介绍。
设计经验 发布时间 : 2020-07-11
Silicon Labs(芯科科技) Wi-Fi 芯片和模块选型指南
目录- Wi-Fi SoC and Module Selector Guide Wi-Fi Lineup Wi-Fi Development Kits IoT Wi-Fi Technology Leader Wi-Fi Applications Company Profile
型号- SLEXP8022A,SIWX915,RS9116,WF200,SIWX917,RS9116X-DB-EVK1,RS9116X-SB-EVK1,RS9116X-SB-EVK2
单片机系统针对网络加密通讯的优化方法:思为无线SOC模块内置MPU,防止恶意任务影响系统进程
网络加密通讯是保障数据安全的重要手段。通过对数据进行加密处理,可以有效防止数据在传输过程中被窃取或篡改。对于单片机系统而言,由于硬件资源有限(如计算能力、内存容量等),在实现加密通讯时需要在安全性与系统性能之间进行平衡。本文以G-NiceRF思为无线SOC模块LoRa-STM32WLE5为例,分享单片机系统针对网络加密通讯的优化方法,该系统在无线抄表应用上需要将实时数据通过网络传输至云端。
应用方案 发布时间 : 2024-11-14
【经验】教你如何修改EFR32MG系列SOC ZigBee工程的CCA阈值
Silicon Labs公司的EFR32MG系列SOC单芯片已被广泛应用于智能家居市场产品中。对于ZigBee协议栈,无论单播还是广播,数据包在发送之前MAC层会检测CCA(Clear Channel Assessment ),如果检测到接收信号强度低于阈值,数据包就不发送。因此需要根据实际情况来设置合理的CCA阈值,本文就指导大家来设置EFR32MG系列SOC的CCA阈值。
设计经验 发布时间 : 2019-01-31
【经验】Matter入门指导3:基于GSDK创建Matter - SoC Lighting over Thread工程
本文主要介绍使用EFR32MG24 Breakout Board,基于GSDK创建Matter - SoC Lighting over Thread工程的方法,我们后面会使用这个工程的固件来做Matter over Thread灯设备的控制实验。
设计经验 发布时间 : 2023-05-18
【IC】芯科科技MG26多协议SoC功能全面提升,迎合Matter over Thread开发代码增长需求
SILICON LABS近期针对Matter开发的扩展需求发布了MG26多协议SoC新品,通过提升了两倍的闪存和RAM容量以及GPIO,同时添加了人工智能和机器学习(AI/ML)硬件加速器来帮助开发人员满足未来更严苛的Matter物联网应用需求,包括增加对新的设备类型和安全功能增强等的支持。
产品 发布时间 : 2024-04-25
【产品】支持蓝牙5.2的SoC EFR32BG22系列,可满足智能家居、消费类电子、商业和工业物联网应用需求
Silicon Labs(亦称芯科科技)新年发布的特别优化的蓝牙单芯片SoC解决方案-EFR32BG22(BG22),支持蓝牙5.2、Bluetooth® Low Energy、蓝牙网状网络和1米以下测向精度,适用于物联网产品的大量生产。该系列提供了三种蓝牙SoC产品供选择,专为满足智能家居、消费类电子、商业和工业物联网应用(包括那些需要多年电池使用寿命的应用)对价格/性能的各种要求所打造。
新产品 发布时间 : 2020-02-03
AN1416: SiWx917 SoC Memory Map Application Note
型号- SIWG917M100MGTBA,SIWG917M121XGTBA,SIWG917,SIWG917M111XGTBA,SIWG917M110LGTBA,SIWX917,SIWG917M111MGTBA,SIWG917M141XGTBA
Silicon Labs FG25 SoC助力开发下一代智能电表,通过Wi-SUN联盟认证,满足成本、尺寸和性能要求
Nagano JRC通过其在可再生能源、储能和智能电网系统方面的创新技术,在这一现代化进程中发挥了重要作用。该公司的部分任务是装备原始设备制造商(ODM/OEM),包括开发下一代智能电表和其他物联网设备的制造商。正是考虑到这一点,该公司开始运用芯科科技FG25 sub-GHz SoC来创建一个Wi-SUN FAN 1.1模块以提供智能电表所需的性能,同时为开发人员和终端客户创造优质的用户体验。
应用方案 发布时间 : 2023-04-30
EFR32FG28 Wireless SoC Family Data Sheet
型号- EFR32FG28A120F1024GM48-A,EFR32FG28A010F1024GM48-A,EFR32FG28B310F1024IM48-A,EFR32FG28A110F1024GM48-A,EFR32FG28A110F1024GM68-A,EFR32FG28B310F1024IM68-A,EFR32FG28A322F1024IM68-AR,EFR32FG28B320F1024IM68-A,EFR32FG28A122F1024GM68-A,EFR32FG28A112F1024GM68-A,EFR32FG28B312F1024IM68-A,EFR32FG28A122F1024GM48-A,EFR32FG28B312F1024IM48-A,EFR32FG28,EFR32FG28B322F1024IM68-A,EFR32FG28B320F1024IM48-A,EFR32FG28A112F1024GM48-A,EFR32FG28B322F1024IM48-A,EFR32FG28A120F1024GM68-A,EFR32FG28A010F1024GM68-A
从LoRa-STM32WLE5看SoC片上系统:高性能与低功耗的完美结合
SoC与其他芯片的主要区别在于其高度集成性。与微处理器(CPU)和微控制器(MCU)相比,SoC不仅包含计算核心,还集成了存储器、通信接口、图形处理器(GPU)、数字信号处理器(DSP)等模块,能够独立完成系统功能。
产品 发布时间 : 2024-10-18
电子商城
品牌:SILICON LABS
品类:Wireless Gecko SoC
价格:¥8.1764
现货: 104,128
品牌:SILICON LABS
品类:Mighty Gecko Multi-Protocol Wireless SoC
价格:¥27.0929
现货: 90,767
品牌:SILICON LABS
品类:Wireless Gecko SoC
价格:¥10.4994
现货: 61,779
品牌:SILICON LABS
品类:Wireless Gecko SoC
价格:¥11.5212
现货: 59,367
现货市场
服务
配备KEYSIGHT网络分析仪,可测量无线充电系统发射机/接收机线圈的阻抗,电感L、电阻R、电感C以及品质因数Q,仿真不同充电负载阻抗下的无线充电传输效率。支持到场/视频直播测试,资深专家全程指导。
实验室地址: 深圳 提交需求>
登录 | 立即注册
提交评论