解密射频匹配电路:优化信号传输的精湛艺!
一、射频匹配电路的意义
射频电路匹配的意义在于确保信号的最大功率传输和最小反射损耗,以优化射频系统的性能和效率。匹配在射频电路设计中是至关重要的,对于实现可靠的通信、高效的能量传输以及减少信号失真都起着重要作用。
它具有以下几个意义:
1、最大功率传输:匹配电路可以使信号源与负载或中间电路的阻抗相匹配,从而最大限度地传输信号功率。当信号源与负载的阻抗不匹配时,信号会被反射回信号源,导致功率损失。匹配可以减少这种反射损耗,确保信号被有效地传输到负载端。
2、最小反射损耗:反射损耗会降低射频系统的效率,并可能导致信号的干扰和失真。匹配电路通过调整电路的阻抗,减少信号在电路中的反射,从而降低反射损耗,提高系统的性能和稳定性。
3、防止干扰和回波:匹配电路可以避免信号在电路中的回波现象。回波可能会导致信号在传输过程中相互干扰,影响通信的可靠性和质量。匹配可以减少回波现象,确保信号在传输中保持清晰和稳定。
4、保护电路元件:在射频电路中,匹配电路可以提供适当的负载,以保护电路元件免受过大的电压或电流的损害。良好的匹配可以确保电路元件在工作点处于安全和稳定的状态。
5、提高系统效率:通过匹配电路,可以最大程度地利用电源能量,并将其传输到负载端,从而提高系统的效率。这对于电池供电的射频设备尤其重要,可以延长电池寿命和设备使用时间。
其实总结下来就是:
(1)射频电路中,信号电平过小,无法容忍损耗
(2)最大功率传输的要求二、主要匹配电路的介绍
1、L型匹配网络:L型匹配网络由一个电感和一个电容串联或并联组成。它被广泛应用于匹配不同阻抗之间的射频电路,尤其是在天线系统中常见。也称为双元件匹配电路。
2、π型匹配网络:π型匹配网络由一个电感和两个电容组成。它常用于匹配传输线和负载之间的阻抗差异。也称为三元件匹配电路。
3、T型匹配网络:T型匹配网络由一个电容和两个电感组成。它主要用于匹配信号源和传输线之间的阻抗。也称为三元件匹配电路。
4、Stub匹配:Stub匹配是通过在传输线上引入固定长度的开路或短路线段来实现匹配。Stub匹配常用于宽带匹配和窄带匹配,尤其适用于微带线和同轴电缆系统。
我们本篇内容主要讲解前三种匹配(L型、π型、T型),其中Stub将单独以一章的形式配合史密斯圆图出视频教程来和大家见面。
- |
- +1 赞 0
- 收藏
- 评论 0
本文由莫子若转载自康希通信公众号,原文标题为:解密射频匹配电路:优化信号传输的精湛艺!,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
相关推荐
技术分享 | 一起来学习802.11物理层测试标准(MCS对应的速率怎么算?)
本文中康希通信来给大家介绍802.11物理层测试标准(MCS对应的速率怎么算),希望对各位工程师有所帮助。
射频功率放大器(RF PA)线性化技术及分类介绍
射频功率放大器(RF PA)是发射系统中的主要部分,其重要性不言而喻。在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大(缓冲级、中间放大级、末级功率放大级)获得足够的射频功率以后,才能馈送到天线上辐射出去。为了获得足够大的射频输出功率,必须采用射频功率放大器。在调制器产生射频信号后,射频已调信号就由RF PA将它放大到足够功率,经匹配网络,再由天线发射出去。
功放测试关注哪些指标?
功放是发射电路的核心,对宽带传输尤为重要,尤其影响非恒包络调制方式。其调试涉及矢网调匹配、增益、功率和效率,信号源与频谱仪调线性。使用两套设备旨在优化功率、线性和效率。测试包括匹配、频率功率扫描、线性(AM-PM失真、互调、EVM/ACPR)、谐波分析及效率评估。匹配确保最大功率传输;频率与功率扫描界定带宽与功率范围;线性测试关注失真,确保信号质量;谐波考量滤波器设计;效率则需与线性平衡。
详解分贝(dB)单位
在日常工作和生活中,我们会接触到许多不同类型的单位。比如大家熟知的国际基本单位(International System of Units, SI 单位),共有七个基本量:长度(米,m),质量(千克,kg),时间(秒,s),电流(安培,A),热力学温度(开尔文,K),物质的量(摩尔,mol)和发光强度(坎德拉,cd)。
康希通信战略控股芯中芯,加速物联网领域布局
康希通信与深圳市芯中芯科技有限公司(以下简称“芯中芯”)签署了《关于深圳市芯中芯科技有限公司收购框架协议》,拟以现金方式收购已参股公司芯中芯的部分股权,将持股比例提升到51%,实现对芯中芯的控股。这一战略举措标志着康希通信在物联网领域的布局进一步加快,为公司未来的发展注入了新的活力。
喜报 | 康希通信KCT8103L射频前端集成电路荣获第九届中国IoT创新奖IoT年度产品奖
康希通信KCT8103L射频前端集成电路荣获“IoT年度创新产品奖”。专为860M~930MHz ISM频段设计,集成PA、LNA和SPDT,支持多种LP-WAN协议,已在智能水表、电表、智慧城市等领域广泛应用。
【产品】2.4GHz高集成度、单芯片的射频前端模组RT201,支持802.15.4和ZigBee标准
RT201是康希通信推出的一款完全集成的单芯片RFIC(RF前端集成电路),它包含关键的RF功能。该器件设计用于2.4GHz ISM频段,支持802.15.4和ZigBee标准,是需要扩展覆盖范围和带宽的应用的完美射频前端解决方案。
技术分享 | 一起来学802.11物理层测试标准-第五章(EVM与MCS以及接收机性能的关联-11ac的接收机性能)
EVM衡量无线信号质量,与MCS调制阶数和编码速率相关,影响接收机性能。11ac接收机性能包括灵敏度、邻道抑制等指标。
【产品】工作频段为5.925-7.125GHz的射频前端模组KCT8773HE,集成PA/LNA+BP/SW等功能
KCT8773HE是康希通信推出的一款工作频段为5.925-7.125GHz的高集成射频前端模组。集成IEEE 802.11 a/n/ac/ax WLAN系统所需关键射频功能,如高效高线性功率放大器(PA)、包含旁路滤波器(BP)的低噪声放大器(LNA) 等。
【产品】2.4GHz射频前端模组KCT8204L,高集成、单芯片,支持802.15.4和ZigBee标准
KCT8204L是康希通信推出的一款完全集成的单芯片RFIC(RF前端集成电路),它包含关键的RF功能,设计用于2.4GHz ISM频段,支持802.15.4和ZigBee标准。它是需要扩展覆盖范围和带宽的应用的完美射频前端解决方案。
无线通信 | 聊一聊Wi-Fi:高速连接下的射频“芯”机遇与挑战(下)
我们将从不同领域的应用角度出发,进一步剖析Wi-Fi射频前端芯片的挑战、难点以及未来发展机遇,以期对Wi-Fi技术有更全面、深入的理解。
【产品】2.4GHz高集成度、单芯片射频前端模组RT202,可用于需要扩展覆盖范围和带宽的应用
RT202具有简单的低电压控制逻辑,并且需要最少的外部元件。此外具有坚固的ESD和VSWR保护性能。用于2.4GHz ISM频段,支持802.15.4和ZigBee标准。它是需要扩展覆盖范围和带宽的应用的完美射频前端解决方案。
探讨射频放大器的线性和非线性特性
在一定的工作条件下,系统是近似于线性的,这种情况下我们可以将其等效成线性系统。一般对系统的线性影响比较大的的器件是放大器(PA)。
技术分享 | PCB设计中最常见的10个EMC挑战
本文旨在探讨PCB设计过程中最常遇到的EMC问题,并提供实用的策略以尽量减少其影响。
电子商城
登录 | 立即注册
提交评论