解析SiC MOS的栅极驱动设计——驱动电压
SiC MOSFET的门极驱动设计并不复杂。和硅基IGBT、硅基超结MOSFET基本类似。设计上可简单分解为硅基IGBT的负压驱动设计能力+硅基超结MOSFET的高速开关设计能力。
与硅基器件相比,SiC MOSFET的跨导(增益)更低,内部栅极电阻更高,其栅极导通阈值在高温下可能低于2 V。因此,在关断状态下,必须向SiC MOSFET 施加负栅源电压(建议为-3~-5V)。SiC器件的栅源电压通常要求在18V~20V,以降低导通状态下的导通电阻(RDS)。SiC MOSFET工作在低VGS下可能会导致热应力或由于高RDS 而可能导致故障。与低增益相关的其他影响会直接影响几个重要的动态开关特性,在设计适当的栅极驱动电路时必须考虑这些影响,包括驱动电压,外接栅级, 驱动能力(输出峰值电流、开关频率等),栅极电荷(米勒平台),传输延迟时间(一次侧-二次侧之间等),保护功能(Miller Clamp、DESAT、OCP、UVLO 等),共模瞬态抑制(CMTI:Common Mode Transient Immunity)等。
受篇幅限制,本文昕感科技分享的是驱动电压部分。
驱动开通的正压和关断的负压,昕感科技的SiC MOSFET单管的驱动电压有+18V/-5V,+18V/-4V,+20V/-5V三种。建议参考规格书中VGSop。
正压:建议使用规格书推荐的+18V/+20V驱动电压。过低的正压,比如适合硅基材质的+15V,RDS(on)会增大,如图1所示,增加导通损耗。超过推荐的+18V/+20V正压驱动碳化硅MOSFET是不必要的,应避免震荡的时超过VGS绝对最大额定值,如图2。
负压:建议使用规格书推荐的-4V/-5V,应避免震荡时超过VGS低于负压最大额定值-8/-10V,如图2。
对于关断电压是-4V或-5V还是0V
首先参考SiC MOSFET的DATASHEET上推荐的关断电压。再考虑门极电压阈值裕度为ΔVgs_th=Vgs(th)-Vgs_off, 当dv/dt趋于无穷大时,dv/dt产生的门极电压变化为:
ΔVgs=Vbus*Crss/Ciss。可知,当门极电压阈值裕度ΔVgs_th越大于dv/dt造成的门极电压变化ΔVgs时,器件Vgs_off安全裕度越大,误开通风险越小。但是Vgs_off越小,引起Vgs(th)漂移越大,导致导通损耗增加。综合考量计算ΔVgs_th后,在实验过程中实测ΔVgs,可以进一步提升实际应用的稳定性和性能。
对于0V关断电压探讨
虽然驱动电压Vgs为0V时已经可以关断SiC MOSFET,但是由于dv/dt引起的ΔVgs,可能会导致SiC MOSFET误导通,导致设备损坏,故而不推荐使用。当然如果是设计的dv/dt非常小,Crss/Ciss比值足够小,并且充分考虑到ΔVgs对SiC MOSFET误导通的影响下,客户可以根据自己的设计而定。
重点考虑dv/dt造成的ΔVgs以及环路等效电感,对误导通的影响,在设置Vgs_off=0V时,才能让系统更加稳定。故一般不推荐0V关闭。
对于整机起机的时候,建议初始Vgs电压是-4V或-5V。以避免无序时候的误导通。
- |
- +1 赞 0
- 收藏
- 评论 0
本文由犀牛先生转载自昕感科技公众号,原文标题为:昕课堂丨SiC MOS的栅极驱动设计--驱动电压,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
相关推荐
昕课堂丨一文了解SiC MOSFET鲁棒性原理
昕感科技基于车规平台推出的1200V SiC MOSFET系列产品拥有优异的鲁棒性。在800V母线电压条件下短路耐受时间达到3us,可以为系统提供充分的反应时间,提升了系统的可靠性。昕感N2M120007PP11同样拥有优秀的最大雪崩击穿耐受能量EAS 。
昕感带你看懂SiC MOSFET SOA曲线
SOA的全称是Safe Operating Area,中文名是安全工作区,指功率器件可以正常工作不被损坏的电流-电压区间。当下商用功率SiC MOSFET的数据手册中都会提供SOA曲线,方便工程师进行设计。本文昕感科技将带你详细了解SOA曲线。
解读SiC MOSFET关键参数——Vth
当代电子技术的发展不仅需要高效性能,还需要可靠和可持续的解决方案。而SiC MOSFET作为一种新型的功率器件,我们要聊的是碳化硅MOSFET中另一个关键参数——Vth,这个参数不仅关系到器件的开启与关闭,还直接影响到器件的导通损耗和开关速度,进而影响到整个系统的效率和可靠性。本文解读SiC MOSFET关键参数——Vth ,希望通过本文的介绍,您能对SiC MOSFET的Vth有更深入的了解。
京能集团副总经理陈国高一行莅临参观昕感科技
5月30日上午,北京能源集团副总经理陈国高一行前往无锡江阴,对北京昕感科技有限责任公司在江阴在建的特色工艺晶圆厂进行了深入的调研和参观。此次考察旨在增进双方了解,并就相关产业技术进行交流。
清华大学电子系党委书记看望昕感科技,期待未来在集成电路领域的合作交流
2024年7月17日下午,清华大学电子系党委书记沈渊带队前往无锡江阴调研北京昕感科技有限责任公司在江阴特色工艺晶圆厂,集成电路学院校友、董事长王哲参与考察接待并进行交流座谈。昕感科技期待未来更多与清华大学在集成电路领域的合作交流。
昕感科技将携SiC器件、SiC功率模块以及电源模组方案亮相2024慕尼黑上海电子展
2024年7月8号-10号,慕尼黑上海电子展将在上海新国际博览中心隆重举行。昕感科技作为大功率器件及模组解决方案IDM厂商,将携SiC器件、SiC功率模块,以及电源模组方案亮相。最新推出的1200V/7mΩ、1200V/13mΩ SiC MOSFET将会现场展出。展位号: E3馆 3166。
无锡市委常委、江阴市委书记赴昕感科技视察指导,合力推动功率半导体芯片项目建设
2024年6月14日上午,无锡市委常委、江阴市委书记许峰以市人大代表的身份,深入一线、现场视察,听取民意、汇集民智,不断开创江阴高质量发展新局面。昕感科技作为代表企业受到许峰书记一行视察指导。江苏昕感科技有限责任公司专注于功率半导体芯片的研发及产业化,产品广泛应用于新能源汽车、光伏发电等领域。
北京特瓦特能源董事长王学启接待昕感团队
北京京能投资总监王潇与昕感科技创始人王哲访问特瓦特能源科技,双方就未来合作进行深入交流。特瓦特对昕感的SiC MOSFET和充电桩模组表示高度认可,并明确了合作方式。王潇希望在储充停车场站项目中尽快实现合作,共同推动技术迭代,打造有竞争力的产品。
浅析昕感科技在沟槽SiC MOSFET方向的研究专利
为开发高质量的沟槽SiC MOSFET产品,昕感科技很早便开始先进沟槽型技术的布局,已形成沟槽型SiC MOSFET方案。目前已公开的先进沟槽型SiC MOSFET结构设计相关专利达到10项,其中9项已实现授权,专利文件中也都包含完整的电学仿真结果证明新结构的性能优越性,并附上完整的制造流程指导方案的实现。授权专利中的结构可以分为四大类,本文将给大家分别介绍其中的关键技术。
无锡市委书记杜小刚一行视察昕感科技晶圆厂建设情况
江苏昕感科技有限责任公司专注于功率半导体芯片制造,总投资20亿元,总建筑面积超4.5万平,核心生产无尘室面积达1万平。产品广泛应用于新能源汽车、光伏发电等领域。预计8月份设备进场调试,12月底正式投产,项目满载后产值可达数十亿元。
SiC器件在电动汽车无线充电的应用及技术优势
无线电能传输技术是一种新兴的充电技术,通过电磁感应原理将电能从发射侧装置传输到接收侧装置中,再通过功率变换电路给负载进行充电,从而实现非接触式充电。近年来,电动汽车无线充电技术备受关注,并逐步走向商业化应用。本文将重点探讨碳化硅器件在电动汽车无线充电的应用及技术优势。
选对不选贵丨昕感科技SiC器件选型一览表
昕感科技SiC MOSFET累计出货客户百余家,产品广泛应用于光伏储能、新能源汽车、工业控制等领域。昕感科技是国内为数不多可进行6吋晶圆特色工艺生产的IDM厂商,后续可为客户提供更好的支持与服务。
昕感科技携SiC器件产品亮相24年慕尼黑上海电子展,涵盖650V/1200V/1700V等不同电压等级
2024年7月8日,慕尼黑上海电子在上海新国际博览中心如火如荼的举行。昕感科技专注SiC器件及模组研发,拥有专业技术团队,可为客户提供专业快捷的服务支持,帮助客户快速部署产品应用,全面提升产品的市场竞争力。
昕感科技1200V/7mΩ SiC MOSFET,采用TO247-4PLUS封装,方便实现大电流并联
昕感科技在低导通电阻器件的开发上走在了行业的前列,于2023年推出一款1200V/7mΩ SiC MOSFET产品N2M120007PP0,使用了TO247-4PLUS封装降低器件热阻。该产品工作电流可达300A以上,具有正温度系数,可方便实现大电流并联。同时,昕感新品的漏电流极低,具备优越的高压阻断特性,方便用户使用和节省成本。
【元件】昕感科技新近推出兼容15V栅压驱动的1200V/13mΩ低导通电阻SiC MOSFET产品
近日,昕感科技发布一款兼容15V栅压驱动的1200V低导通电阻SiC MOSFET产品N2M120013PP0,导通电阻在15V栅压下低至13mΩ,配合低热阻TO-247-4L Plus封装,可以有效提升电流能力,满足客户的大功率应用需求。
电子商城
现货市场
服务
定制液冷板尺寸5mm*5mm~3m*1.8m,厚度2mm-100mm,单相液冷板散热能力最高300W/cm²。
最小起订量: 1片 提交需求>
登录 | 立即注册
提交评论