于RDK X3设置USB摄像头驱动,实现采集图像数据和发布功能
功能介绍
hobot_usb_cam从USB摄像头采集图像数据,以ROS标准图像消息或者零拷贝(hbmem)图像消息进行发布,供需要使用图像数据的其他模块订阅。
物料清单
使用方法
硬件组装
将USB摄像头连接到RDK的USB插槽。
安装功能包
启动RDK后,通过终端或者VNC连接RDK,复制如下命令在RDK的系统上运行,完成相关Node的安装。
tros foxy版本
tros humble版本
使用USB摄像头发布图片
在RDK系统的终端中运行如下指令,启动已连接的相机:
tros foxy版本
tros humble版本
hobot_usb_cam.launch.py配置默认输出640x480分辨率mjpeg格式图像,发布的话题名称为/image。
如需使用其他分辨率可以在启动命令中指定,比如发布1920x1080分辨率mjpeg格式图像:ros2 launch hobot_usb_cam hobot_usb_cam.launch.py usb_video_device:=/dev/video8 usb_image_width:=1920 usb_image_height:=1080。
如程序输出如下信息,说明节点已成功启动。
查看效果
这里采用web端方式实现图像可视化,另起一个终端用于webservice发布。
打开一个新的终端,启动如下命令:
tros foxy版本
tros humble版本
打开同一网络电脑的浏览器,访问IP地址(浏览器输入http://IP:8000,IP为地平线RDK IP地址),点击左上方Web展示端即可看到USB摄像头输出的实时画面:
接口说明
话题
发布话题
参数
常见问题
1. 如何设置video_device参数?
RDK接入USB摄像头之后会出现新的设备号,例如/dev/video8,使用此设备号作为video_device参数。
另外,该Node支持设备号自适应,如果设置错误,运行时会自动适配。
2. 无相机标定文件是否影响相机功能?
不影响。
如果没有相机标定文件,则无法发布相机内参,但不影响图像获取和发布功能。
3. 设置pixel_format是否正确?
a.查询usb camera支持的图像格式,如上述log,log显示支持mjpeg和YUYV;
b.修改pixel_format的配置,但是必须usb camera支持的格式,否则hobot_usb_cam退出。
- |
- +1 赞 0
- 收藏
- 评论 0
本文由雪飘梦飞转载自D-Robotics官网,原文标题为:USB摄像头驱动,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
相关推荐
连接RDK X3操作奥比中光Astro Pro相机驱动示例
基于RDK X3的奥比中光Astro Pro相机驱动操作方案介绍。
基于RDK X3开发板设计并实现的手持slam建图设计
这里使用RDK X3开发板设计并实现了一款SLAM手持建图设备,它使用RDK X3开发板的计算性能,通过激光雷达实现一个纯激光里程计,通过IMU对激光数据进行畸变矫正和对SLAM的姿态矫正,实现一个手持的SLAM建图功能。
RDK平台实现MIPI相机驱动的操作实例
本项目案例为对已适配的MIPI接口摄像头进行配置,并将采集的图像数据以ROS标准图像消息或者零拷贝(hbmem)图像消息进行发布,供需要使用图像数据的其他模块订阅。
基于RDK X3操作思岚激光雷达驱动示例
SLLIDAR ROS2驱动,以ROS2标准消息格式发送激光雷达数据。
RDK X3基于RDK X3的手势识别算法示例
手势识别算法示例订阅包含人手框、人手关键点信息的算法msg,利用BPU进行推理,发布包含手势信息的智能结果msg。手势识别算法集成了人手关键点检测,手势分析等技术,使得计算机能够将人的手势解读为对应指令,可实现手势控制以及手语翻译等功能,主要应用于智能家居,智能座舱、智能穿戴设备等领域。
YDLIADAR激光雷达驱动应用实例
介绍YDLIADAR激光雷达驱动的方案与技术要求,YDLIDAR ROS2驱动,以ROS2标准消息格式发送激光雷达数据。
基于地平线RDK模型YOLOv5s深度学习的方法进行赛道障碍物检测应用实例
该功能为基于深度学习的方法识别赛道中的障碍物,使用模型为YOLOv5s。地平线RDK通过摄像头获取小车前方环境数据,图像数据通过训练好的YOLO模型进行推理得到障碍物的图像坐标值并发布。
基于RDK平台的YOLOv10目标检测算法示例
YOLO功能介绍YOLO目标检测算法示例使用图片作为输入,利用BPU进行算法推理,发布包含目标类别和检测框的算法msg。YOLO目标检测算法示例使用图片作为输入,利用BPU进行算法推理,发布包含目标类别和检测框的算法msg。目前支持yolov2、yolov3、yolov5、yolov5x四个版本。
基于RDK X3 & Module的性能检测软件使用示例
Performance Node该应用基于Web网页打造,无论是什么品牌的电脑和手机,只需要在浏览器访问即可。
多模态感知仿生机械手项目案例
本项目提供了一款五指仿生机器手,其仿照人手的外观与自由度,使其能够作为人形机器人的末端执行器,完成人手所能完成的任务。
智能语音聊天机器人功能及使用指南
智能语音聊天机器人通过识别用户语音,调用ChatGPT API获取答复并播放,实现语音聊天。需地平线RDK、ChatGPT API Key及音频板等物料。准备、组装后,安装功能包并运行,配置音频和ChatGPT API Key。常见问题包括设备连接、音频驱动、配置文件及网络访问等。
2D垃圾检测应用示例
本Node是基于hobot_dnn开发的2D垃圾目标检测算法,采用PaddlePaddle开源框架, 利用PPYOLO模型进行垃圾检测任务设计和训练。为了达到快速部署的目的,本Node支持配置文件更换垃圾检测模型,开发者可以将更多精力投入在算法模型能力的迭代,减少部署工作量,识别输出的AI信息不仅可以通过话题发布,还可以在Web页面渲染显示。
RDK X3 机械臂捡垃圾经验分享
hobot_arm package 是基于 mono2d_trash_detection package 开发的2D垃圾目标检测+机械臂抓取的应用示例。在地平线的旭日X3派上利用BPU进行模型推理获得感知结果,利用幻尔机械臂作为下位机,进行垃圾抓取的示例。
基于RDK X3实现的语言大模型操作实例
hobot_llm是地平线RDK平台集成的端侧Large Language Model (LLM) Node,用户可在端侧体验LLM。目前提供两种体验方式,一种直接终端输入文本聊天体验,一种订阅文本消息,然后将结果以文本方式发布出去。
OriginBot机器人最小功能系统的机器人底盘驱动应用实例
OriginBot是一款智能机器人开源套件,更是一个社区共建的开源项目,旨在让每一位参与者享受机器人开发的乐趣。该项目是OriginBot机器人最小功能系统,该最小系统可接受/cmd_vel指令控制机器人运动并反馈/Odom信息。
电子商城
登录 | 立即注册
提交评论