解码“新质生产力”,一站式AI工具成工业智能化升级关键
当前,各大产业最热门的话题无疑是“新质生产力”,发展“新质生产力”对产业智能化升级带动明显,尤其是作为国民经济主导的工业,产业重点已经从工业自动化转变为工业智能化。
AI(人工智能)作为一项颠覆性技术,是工业智能化升级的核心驱动力。如何快速完成AI和工业制造场景的融合,成为企业决胜未来的关键。根据Frost&Sullivan的统计数据,2023年全球工业自动化市场规模达到4807.3亿美元,预计2025年将达到5436.6亿美元。从自动化到智能化,工业智能有着巨大的存量市场和未来空间。
数据来源:Frost&Sullivan,电子发烧友网制图
面向这一蓝海市场,作为行业领先的物联网整体解决方案供应商,移远通信推出工业智能品牌宝维塔™ (ProvectaAI)旗下核心产品——AI算法平台「匠心」,并于近日举办了「匠心」平台主题直播,介绍了这款行业领先的一站式AI开发工具。
移远通信副总经理兰世桂在直播中表示:“移远通信是当前行业内为数不多的具备边缘计算软硬件开发能力和AI算法自研能力的企业,「匠心」平台打造的AI模型可以一键下放到指定的边缘计算终端,促进AI技术在各行各业的广泛应用。同时,宝维塔™成功将AI推理从传统的X86架构拓展到ARM架构。ARM架构具有天然的高集成度优势,相较于传统X86架构,ARM架构配合「匠心」平台最多可以节省50%的硬件成本。”
工业智能培育“新质生产力”
在AI技术的加持下,工业智能已经成为现代工业革命里最核心的内容,帮助各类型工业制造场景提升生产效率、优化品控检测、降低生产成本、快速响应市场需求。工业智能主要有视觉智能、数据智能和交互智能三大赛道,均有丰富的应用场景。
以工业视觉为例,传统机器视觉只能够提供基本的检测和识别功能,引入AI技术之后,特别是卷积神经网络 (CNN) 等深度学习技术,智能化的机器视觉能够基于海量数据进行学习和推理,可以执行特征识别、细微伤痕检测、材料检验等日益复杂的视觉任务。
因而,通过增强视觉智能、数据智能和交互智能能力,工业智能可以借助精准控制、智能分析、自动化生产、质量追溯等手段,进一步提升智能制造水平,快速培育工业市场的“新质生产力”。
从工业自动化到工业智能化,是“AI+”落地的典范,AI算法模型在其中扮演着关键角色。和云端AI大模型不同,工业智能所需要的是更加具象化的“小模型”。AI大模型在模型容量和参数量方面受到的限制很小,具有更强的普适性,但也就意味着在特定场景下需要深度优化和“瘦身”。AI小模型可以基于有限的数据量,针对特定场景打造出规模更小、成本更优、性价比更高、实用性更强的模型。这些AI小模型反应灵敏,对于算力和内存的需求更小,可以进行本地化部署。
然而,AI小模型虽然看起来灵活轻便,但在实际开发、部署和管理过程中却也需要面临很多方面的挑战。AI小模型的开发和部署流程主要包括数据分析、数据标注,模型选择,训练框架选择和模型训练,模型转换,以及模型部署。由于数据、容量和硬件性能各方面的限制,上述每一个环节都会遇到相应的挑战。
具体来看,在数据分析、数据标注环节,开发人员需要根据数据特点、检测类型进行数据标注。高质量的数据获取和标注是非常重要的,但完成这项工作并非易事。主要原因在于,需要智能化升级的企业往往对模型框架、部署方式认知不足,对模型需要怎样的数据只有模糊的概念,标注人员对于数据的理解也不统一,从而导致数据质量难以达标,最终影响模型的性能和泛化性。
在模型选择环节,开发人员需要根据精度和算力需求,结合终端实际情况,选择合适的算法模型。由于小模型通常具有简单的结构和较少的参数,因此每一个小模型都有优势的应用场景,开发人员需要很大的精力去选择和构建模型,尤其是在高度可解释性场景里,一旦选错,“真假”人工智能往往只有一步之遥。同时,考虑到生产任务时常变更,模型泛化能力也很重要。
在训练框架选择和模型训练环节,开发人员需要通过训练得到和特定场景适配的网络及参数。这一环节是AI小模型开发的最后一步,接下来就是部署。很多时候,开发人员会被困在这一环节,由于数据、模型类型和训练框架等方面的问题,会遇到训练的模型难以收敛,却又找不到具体的问题。
在模型转换环节,开发人员需要通过模型转换,得到和推理框架匹配的网络和参数。这个过程也包括很有必要的模型优化,在保证性能的前提下,实现模型的高效压缩和优化。然而,模型转换将会考验开发人员多方面的能力,包括行业认知、应用经验、硬件性能评估、数据微调、模型微调等。否则,模型很难达到最初预设的部署效果。
完成上述工作,最后将进入模型部署环节,为终端移植对应的推理框架,再将模型导入到推理引擎。并不是模型开发和优化完成就宣告成功了,模型部署的挑战同样很大。比如,开发人员需要深刻理解推理引擎和推理算子,AI小模型更加注重算力利用率;需要实现中间表示,完成算法模型和引擎之间的中间件开发。
同时,我们也不能忽视AI人才短缺的问题,这会进一步增加AI小模型开发和部署的难度和成本。正是由于重重挑战的存在,一站式AI开发工具成为工业智能的刚需和新宠。一站式AI开发工具能够提供覆盖模型开发到部署的全流程服务,简化AI方案的开发流程,并做到提质增效,让每一个企业都拥有构建专属AI的能力。这也是移远通信推出「匠心」平台的初衷和意义。
「匠心」平台让工业智能一蹴而就
「匠心」是宝维塔™精心打造的行业AI平台,可为企业提供一站式、低成本、低门槛的AI模型训练与部署服务,推动AI技术便捷高效落地。移远通信产品经理王柯指出:“对于企业而言,了解AI、熟悉AI部署是一项非常艰巨繁琐的任务,如果有一站式AI开发工具的帮忙,便能够显著降低企业应用AI的门槛,让工业智能应用更快落地。相关工具的打造会涉及很多AI模型开发和部署方面的‘know how’,这些‘know how’都是在多年项目实战中积累起来的。亲自经历过,才能打造出更好的产品。这正是宝维塔™的优势所在。”
如下图所示,这是一个端到端的全链路架构,将「匠心」平台、设备端的AI推理引擎SDK和物联网连接融为一体。「匠心」平台提供数据上传、数据标注、模型训练、模型测试、模型发布等全流程功能。有了这个平台,企业遇到的AI小模型相关问题都会迎刃而解。
「匠心」平台端到端全链路架构,图源:移远通信
移远通信为「匠心」平台提供完善的教学材料和强大的技术支持团队,进一步降低了企业的AI准入门槛。为了提升企业部署工业智能的自由度,「匠心」平台提供灵活的服务模式,无论企业有无自己的开发团队,都能使用该平台,企业既可以直接在宝维塔™「匠心」平台开发训练模型,也可以选择私有化部署。同时,「匠心」平台能够兼容目前市面上主流的硬件平台,包括常规的X86 CPU架构、英伟达显卡,以及高通、紫光展锐、瑞芯微RK等公司的ARM架构平台。宝维塔™还提供硬件状态监测和数据存储策略,保障AI模型平稳地运行。
移远通信研发经理俞喆俊分享了「匠心」平台的具体操作以及相关应用优势。比如,在AI模型开发最开始的数据标注环节,如下图所示,「匠心」平台支持模型预标注,鼠标点击自动画轮廓;支持数据智能处理,物料自动融合;支持使用自动标注模块进行预标注;支持多人同时标注。
「匠心」平台数据标注功能,图源:移远通信
再比如,企业借助「匠心」平台可进行高效模型训练。该平台支持训练量化提高精度,下图展示了Int8量化感知训练;支持增量训练减少训练时间;支持训练过程和训练结果指标的查看分析;支持自定义传统算子。
「匠心」平台Int8量化感知训练,图源:移远通信
正如俞喆俊所言,有了「匠心」平台,企业在引入AI技术时,关注点不再是模型和部署,而是功能的选择。「匠心」平台的功能覆盖图像检测、图像分割、图像分类和OCR识别。其中,亚像素分割(支持 3~5 pixel)是「匠心」平台的一大特色,工业场景存在低分辨率场景,缺陷收集难度较大,基于亚像素分割算法,可以快速训练部署达到一定精度。因此,在试纸检测、轴瓦分割模型、铝丝验证、极柱防爆阀验证等项目中,「匠心」平台的应用可以大幅提升检测和验证的准确率。
「匠心」平台亚像素分割算法优势,图源:移远通信
根据俞喆俊的演示,「匠心」平台在基于正样本的缺陷检测、未知背景过杀问题等具体应用,以及模型推理、模型泛化和模型部署等方面,都表现出了优于竞品的性能。比如,在模型推理方面,「匠心」平台的一大特色是提供加速推理的功能,能够实现2倍以上的推理加速效率。
总结而言,移远宝维塔™「匠心」平台是一个基于端到端全链路架构的一站式AI开发和部署平台,提供灵活的服务模式,拥有亚像素分割、加速推理、多模型管理、系统监测平台等特征优势。除了3C电子外观缺陷检测、汽车电子零部件外观缺陷检测、半导体/泛半导体表面缺陷检测、木板材封边及外观缺陷、玻璃表面检测等工业智能类应用,「匠心」还适用于自动零售商品AI识别等消费类应用场景,以及农副产品分选与循环经济垃圾分拣等其他AI应用。
写在最后
从自动化到智能化,AI技术已经成为工业革命的核心驱动技术。面向广泛的工业制造场景,云端AI大模型从数据量、成本、体量等方面来看,与大部分工业智能场景都不契合,AI小模型成为行业刚需。
不过,企业部署AI小模型面临着一系列挑战,亟需宝维塔™「匠心」平台这样的一站式AI工具帮助他们应对挑战,高效完成工业AI应用的开发和部署。凭借端到端的全链路架构,以及亚像素分割、推理加速等特色优势,宝维塔™「匠心」平台成为工业智能化升级的理想工具,将在数千亿美元级别的自动化市场里,迎来一片巨大的市场蓝海。
- |
- +1 赞 0
- 收藏
- 评论 0
本文由拾一转载自QUECTEL(移远通信知乎),原文标题为:解码“新质生产力”,一站式AI工具成工业智能化升级关键,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
相关推荐
特控“AI之眼”5G边缘计算机平台MEC-T1764加持工厂品控流水线,助力制造企业质检质量提升80%
“机器换人”是加速工业智能化升级的重要举措。在配备相关核心智能工控硬件的情况下,工业AI质检设备在工业领域具有很强的技术优势。特控5G边缘计算机平台MEC-T1764应用在边缘层,通过有线+无线+GPIO+串口+USB采集获取现场有效信息,6代-9代CPU可选算力高效处理配套边缘算法进行有效的算力调度,能够高效的进行现场作业,提高良品率。
应用方案 发布时间 : 2024-05-24
重磅!移远通信工业智能品牌宝维塔™及旗下核心产品、解决方案正式发布
8月27日,在2024高通&移远边缘智能技术进化日上,移远通信宣布,正式发布其工业智能品牌宝维塔™ (ProvectaAI)。与此同时,宝维塔™旗下核心产品——AI算法平台「匠心」、可视化部署工具「匠准」,以及AI视觉解决方案同步推出,全方位展示了移远通信在工业智能领域的专业布局和长远规划,为工业生产的智能化升级注入了强劲动力。
原厂动态 发布时间 : 2024-10-19
Quectel EG91-EX LTE Cat 1 Module Receives EU RED Cybersecurity Certification
Quectel EG91-EX LTE Cat 1 module has been awarded the EU Type Examination Certificate for RED Cybersecurity. This certification confirms that the module complies with the cybersecurity requirements outlined in RED DA, providing Quectel customers with assurance in the module’s robust cybersecurity features.
产品 发布时间 : 2024-10-29
Quectel模组MMS支持UTF8和UCS2格式吗?用哪种格式好?
Quectel模组支持UTF8格式和UCS2格式。但一般建议使用UTF8格式,因为网络对UCS2的兼容性可能不好。
技术问答 发布时间 : 2024-09-30
Quectel SC20 Multi-mode Smart LTE Module with Wi-Fi & Bluetooth
型号- SC20-CE,SC20-W,SC20-AU,SC20-J,SC20,SC20-A,SC20-EU,SC20-E
Quectel模组MMS支持UTF8和UCS2格式吗?用哪种格式好?
Quectel模组支持UTF8格式和UCS2格式。但一般建议使用UTF8格式,因为网络对UCS2的兼容性可能不好。
技术问答 发布时间 : 2024-09-30
Quectel BG95 Series LTE Cat M1/ Cat NB2/ EGPRS Module
型号- BG95-M9,BG95-M6,BG95-MF,BG95-M5,BG95-M4,BG95-M3,BG95-M2,BG95-M1
QUECTEL模组的串口电平如何匹配?
1) 如果MCU的串口电平是3.3V,匹配电路如图3所示: 2) 如果MCU的串口电平是3V,则将图3中的5.6K电阻换成15K。 3) 如果MCU的串口电平是5V,匹配电路如图4所示:
技术问答 发布时间 : 2024-09-30
现货市场
服务
使用FloTHERM和Smart CFD软件,提供前期热仿真模拟、结构设计调整建议、中期样品测试和后期生产供应的一站式服务,热仿真技术团队专业指导。
实验室地址: 深圳 提交需求>
世强深圳实验室提供Robei EDA软件免费使用服务,与VCS、NC-Verilog、Modelsim等EDA工具无缝衔接,将IC设计高度抽象化,并精简到三个基本元素:模块、引脚、连接线,自动生成代码。点击预约,支持到场/视频直播使用,资深专家全程指导。
实验室地址: 深圳 提交需求>
登录 | 立即注册
提交评论