Challenges in Designing Automotive Radar systems
Radar is everywhere in new vehicle designs. HD radar can now function in all weather conditions and can be used as a front-end for AI object detection, complementing other sensor channels to further improve accuracy and safety. There is huge potential for manufacturers of high-value embedded radar systems. However, it can be a challenge to realise this potential against the competition.
System-wide challenges
Automotive OEMs are not just adding more electronic features to new cars, they are also driving a unified system architecture for their product lines to manage costs, simplify software development and maintenance, and improve security and security.
Thus, more computing and intelligence are shifting to integrated regional controllers, on the one hand communicating between relatively small sensors and processors in the small area of the car and between the regional and central controllers on the other hand to manage overall decisions.
Vendors facing the automotive radar systems market must adapt their solution architecture to these changes, providing scalability between relatively simple edge function processing and broader regional controller or central controller functionality, while flexibly adapting to different OEM partition options.
An important implication is that the exchange of large data, among of edges, regions, and central computing must allow whatever the solution partitions. This raises the importance of squeezing data during transmission to manage latency and power consumption.
In addition to performance, power and cost limitations, automotive systems must be considered for service life and reliability. The entire service life of the vehicle may be 10,20 years or more, during which software and AI models may need to be upgraded to fix detected problems or meet changing regulatory requirements.
These constraints require a careful balance in radar system design between high performance/low power in hardware and flexibility in software to adapt to changes. This is not new, but radar pipelines present some unique requirements compared to vision pipelines.
Assembly line challenge
The complete radar system flow is shown in the figure below, from the transmitting antenna and the receiving antenna to the target tracking and classification. The antenna configuration can be 44 (Tx/Rx) and 4864 for HD radar. In the system pipeline after the radar front end, the fast Fourier transform (FFT) of distance information is calculated first, and then the FFT of Doppler information is calculated. This is followed by a digital beamforming phase used to manage digital flow from multiple radar antennas.
A complete radar system pipeline extends from transmit / receive antennas all the way to target tracking and classification.(Source: Ceva)
So far, the data remains to some extent, a "raw signal". The constant false alarm rate (CFAR) phase is the first step to separate the real target from the noise. The arrival angle (AoA) calculation completes the positioning of the target in the 3D space, while the Doppler velocity calculation adds a fourth dimension. Finally, the pipeline ends with target tracking (e. g. using the extended Kalman filter EKF) and object classification (usually using AI models defined by OEM).
First, the radar system must support effective parallelism at the front end to process large antenna arrays, pushing multiple image streams simultaneously through the pipeline and simultaneously providing a throughput of 25 to 50 frames per second.
The amount of data does not only depend on the number of antennas. They will feed into multiple FFT, each FFT can be very large, up to 1K windows (bin). These transformations will eventually transfer the data to a point cloud, which itself can easily reach half a byte.
Clever memory management is essential to maximize throughput. Take the two stages of distance FFT and Doppler FFT as an example. The data written to memory from the distance FFT is 1 D data, written by row. Doppler FFT requires access to this data by column, and without special support, the address jump implied by column access requires multiple burst reads for each column, thus greatly reducing the viable frame rate.
The CFAR is another challenge. CFAR has multiple algorithms, and some algorithms are easier to implement than others. The state-of-the-art algorithm today is orderly statistics CFAR (OS-CFAR), which is particularly powerful when multiple targets exist (common in automotive radar applications). Unfortunately, OS-CFAR is also the most difficult algorithm to implement, requiring statistical analysis in addition to linear analysis. Still, all truly competitive radar systems today should use OS-CFAR.
During the tracking stage, both position and speed are important. They are all three-dimensional (X, Y, Z for position, Vx, Vy, Vz speed). Some EKF algorithms abandon a dimension (usually altitude) to simplify the problem, which is called 4 D EKF. In contrast, high-quality algorithms use all six dimensions (6 DEKF). The main consideration for all EKF algorithms is how many targets it can track.
While aircraft may only need to track a few targets, high-end car radars are now capable of tracking thousands of targets. This is worth keeping in mind when considering the architecture of high-end and (slightly smaller) medium-range radar systems.
All challenges in the classification phase are centered on the AI model and are not within the scope of this radar system. These AI models will usually be run on a dedicated NPU.
Implement the challenge
An obvious question is, what platforms can best meet the needs of all of these radar systems? It must have strong signal processing capability, must meet the throughput target (25-50 fps) at low power consumption, and must also be software programmable to be adaptable over a longer service life. This requires a DSP.
However, it must also process multiple input streams simultaneously, which requires a high degree of parallelism. Some DSP architectures support parallel cores, but for many signal processing functions (such as FFT), the number of cores required may be too many, and the hardware accelerator may be more appropriate.
At the same time, the solution must be able to expand across regional automotive architectures: low-end systems for edge applications, providing data for high-end systems in regional or central applications. It should provide a common product architecture and a common software stack for each application, while simply expanding to accommodate all levels from the edge to the central controller.
- |
- +1 赞 0
- 收藏
- 评论 0
本文由JWM转载自Kinghelm official website,原文标题为:Challenges in designing automotive radar systems,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
相关推荐
金航标带你理解HDMI接口及如何挑选合适的HDMI线缆
对于那些在弱电领域或者日常电气使用中经常遇到各种接口问题的朋友来说,HDMI接口常常是一个棘手的难题。在本文的分享中,金航标带你将一起深入了解HDMI接口及其相关知识。
技术探讨 发布时间 : 2024-05-01
金航标RJ45连接器选型表
金航标提供RJ45连接器选型:额定电压(V):125 VAC RMS,额定电流:1.5A,LED:不带LED/带LED,类别:RJ插座,规格:弯插/直插/全包全塑等。
产品型号
|
品类
|
种类
|
使用寿命
|
颜色
|
额定电压
|
接触电阻
|
规格
|
LED
|
额定电流
|
KH-RJ45-56-8P8C-D-T
|
RJ45网络连接器
|
RJ45网络连接
|
至少750次循环
|
黑色
|
125 VAC RMS
|
最大35mΩ
|
带弹
|
带LED
|
1.5A
|
选型表 - 金航标 立即选型
金航标轻触开关选型表
金航标提供轻触开关选型,额定电流(mA):50mA,额定电压(V)12V,开关长度(mm):2-12mm,开关宽度(mm):1.8-12mm,开关高度(mm):0.35-24mm,机械寿命(次):5万次-30万次,以及多种安装方式:卧贴、立贴、直插、卧插。
产品型号
|
品类
|
额定电流(mA)
|
额定电压(V)
|
安装方式
|
开关长度(mm)
|
开关宽度(mm)
|
开关高度(mm)
|
按钮形状
|
引脚样式
|
按钮/盖帽颜色
|
机械寿命(次)
|
带支架
|
KH-2435-CAJ
|
轻触开关
|
50
|
12
|
卧贴
|
4.6
|
1.8
|
3.5
|
矩形按钮
|
SMD接片
|
黑色
|
8万次
|
否
|
选型表 - 金航标 立即选型
金航标KH-1.27TXM-BK-H3.0短路帽/跳线帽:1.27mm引脚间距,高度设计H3.0
在现代电子工业中,每一个细节都至关重要,尤其是那些看似微小却承载着重大责任的电子元件。短路帽/跳线帽KH-1.27TXM-BK-H3.0,作为Kinghelm金航标品牌下的一款专业电子元件,正是这样一款在电工电气系统中扮演着不可或缺角色的产品。它不仅体现了技术的精湛与设计的巧妙,更在实际应用中展现了其卓越的性能与广泛的适用性。
产品 发布时间 : 2024-11-14
金航标排针选型表
金航标提供排针选型:PIN数:2-40PIN,间距(mm):0.8-2.54mm,类别:单排/双排/三排,额定电流(A):1-3A,多种安装方式:直插/立贴/弯插/卧贴/贴片。
产品型号
|
品类
|
间距(mm)
|
排针数
|
安装方式
|
额定电流(A)
|
PIN
|
度数
|
塑胶高度(mm)
|
PA(mm)
|
PB(mm)
|
PC(mm)
|
类别
|
KH-2.54PH180-3X40P-L11.5
|
排针
|
2.54mm
|
三排
|
直插
|
3A
|
3x40P
|
180度
|
2.5
|
6.0
|
2.5
|
3
|
常规
|
选型表 - 金航标 立即选型
金航标电池底座选型表
金航标电池底座选型:模具:1号模/6号模/7号模,耐电压(V):500-1000V,接触电阻(mΩ):30mΩ MAX,绝缘电阻(MΩ):1000MΩ MIN。
产品型号
|
品类
|
模具
|
材质
|
材料规格
|
耐电压(V)
|
触点
|
接触电阻(mΩ)
|
绝缘电阻(MΩ)
|
KH-CR2032-2-1
|
电池底座
|
1号模
|
铜
|
外壳:PBT黑色;RoHS
|
500V交流电源
|
触点:C2680黄铜;表面处理:镀锡
|
30mΩ MAX
|
1000MΩ MIN
|
选型表 - 金航标 立即选型
金航标TF卡座连接器KH-TF002,兼容性强、数据传输高效,打造高效稳定的存储连接新体验
KH-TF002作为Kinghelm金航标的一款TF卡座连接器,凭借其兼容性强、结构稳定、数据传输高效和耐用性高等特点,在电子设备中得到了广泛应用。无论是手机、平板电脑还是数码相机等便携式设备,Kinghelm金航标KH-TF002都能提供稳定可靠的TF卡连接解决方案。
产品 发布时间 : 2024-11-09
金航标北斗/GPS外置天线KH1GPC-011,具有卓越的性能、稳定的品质和便捷的安装方式
Kinghelm金航标北斗/GPS外置天线KH1GPC-01以其卓越的性能、稳定的品质和便捷的安装方式,成为了市场上的一款优秀产品。无论是用于导航、定位还是其他需要高精度信号接收的领域,它都能为用户提供可靠的解决方案,引领定位技术的新篇章。
产品 发布时间 : 2024-04-26
金航标排母选型表
金航标提供排母选型:PIN数:2-40PIN,间距(mm):0.8-2.54mm,排母类型:单排母/双排母,额定电流(A):1-3A,多种安装方式:直插/弯插/立贴。
产品型号
|
品类
|
间距(mm)
|
PIN
|
高度(mm)
|
安装方式
|
排母类型
|
KH-1.27FH-DZ2X5P-H4.3-SMT
|
排母
|
1.27
|
2X5P
|
4.3
|
直插
|
双排母
|
选型表 - 金航标 立即选型
金航标电池连接器KH-BS2430-1,接触电阻最大值30MΩ,绝缘电阻最小值1000MΩ
金航标推出了专为工业自动化和监测领域设计的高性能传感器产品——KH-BS2430-1电池连接器,其出色的性能参数,如接触电阻最大值30MΩ、绝缘电阻最小值1000MΩ、介电电压75V AC,以及在-55°C至+85°C温度范围内的稳定工作,都彰显了Kinghelm金航标在传感器技术领域的领先地位。
产品 发布时间 : 2024-11-02
金航标胶壳选型表
金航标提供压线端子胶壳/SPH双排胶壳/PA胶壳/HA胶壳/XHD双排胶壳/XA双排胶壳/XA单排胶壳/VH胶壳/PHB双排胶壳/PH胶壳/XH胶壳/XHB胶壳/无缺胶壳选型:间距(mm):1.25-3.96mm,PIN:2-20P,额定电流(A):2-7A,额定电压(V):100-250V。
产品型号
|
品类
|
间距(mm)
|
PIN
|
额定电流(A)
|
额定电压(V)
|
接触电阻(mΩ)
|
绝缘电阻(mΩ)
|
温度范围(℃)
|
耐受电压(V)
|
材料
|
KH-A1250H-16P-JK
|
无缺胶壳
|
1.25mm
|
16P
|
2A AC,DC
|
125V AC,DC
|
最大20mΩ
|
100MΩMin
|
-25℃~+85℃
|
250V AC/分钟
|
尼龙66,UL94V-0
|
选型表 - 金航标 立即选型
额定电流100mA,额定电压24V的金航标KH-BM2.54-10P-W拨码开关,性能稳定,操作简单
Kinghelm金航标作为国内知名的电子元器件制造商,一直致力于为市场提供高质量、高性能的电子产品。KH-BM2.54-10P-W拨码开关作为金航标品牌下的一款产品,以其卓越的性能和稳定的品质赢得了市场的广泛认可。这款拨码开关属于平拨、凸起式类型,操作简单,方便用户进行快速设置和调整。
产品 发布时间 : 2024-08-11
金航标KH-XH-10A-Z连接器,采用了2.5mm的精密间距设计,额定电流高达3A
金航标KH-XH-10A-Z连接器作为Kinghelm金航标品牌的一款高品质、可靠性强的连接器产品,凭借其卓越的性能和广泛的应用领域,在市场上赢得了广泛的认可和赞誉。
产品 发布时间 : 2024-11-01
金航标拨码开关选型表
金航标提供拨码开关选型:开关位数:1-12,引脚间距(mm):1.27-2.54mm,额定电压(V):24V,额定电流(mA):100mA,类型:平拨,凸起式/琴键/平推等,使用寿命(次):2000-3000次。
产品型号
|
品类
|
开关位数
|
引脚间距(mm)
|
额定电压(V)
|
额定电流(mA)
|
类型
|
颜色
|
使用寿命(次)
|
引脚样式
|
KH-BM2.54-10P-W
|
拨码开关
|
10
|
2.54mm
|
24V
|
100mA
|
平拨,凸起式
|
红色
|
2000次
|
PC引脚
|
选型表 - 金航标 立即选型
金航标VGA连接器选型表
金航标VGA连接器选型:类别:公头/母头,PIN:9-44P,度数:90/度/180度,间距:3.08-19.05mm。
产品型号
|
品类
|
类别
|
PIN
|
规格
|
安装方式
|
度数
|
颜色
|
KH-202J-09F5G-01A66
|
VGA连接器
|
母座
|
9P
|
叉锁
|
直插
|
180度
|
蓝胶
|
选型表 - 金航标 立即选型
电子商城
登录 | 立即注册
提交评论