Challenges in Designing Automotive Radar systems
Radar is everywhere in new vehicle designs. HD radar can now function in all weather conditions and can be used as a front-end for AI object detection, complementing other sensor channels to further improve accuracy and safety. There is huge potential for manufacturers of high-value embedded radar systems. However, it can be a challenge to realise this potential against the competition.
System-wide challenges
Automotive OEMs are not just adding more electronic features to new cars, they are also driving a unified system architecture for their product lines to manage costs, simplify software development and maintenance, and improve security and security.
Thus, more computing and intelligence are shifting to integrated regional controllers, on the one hand communicating between relatively small sensors and processors in the small area of the car and between the regional and central controllers on the other hand to manage overall decisions.
Vendors facing the automotive radar systems market must adapt their solution architecture to these changes, providing scalability between relatively simple edge function processing and broader regional controller or central controller functionality, while flexibly adapting to different OEM partition options.
An important implication is that the exchange of large data, among of edges, regions, and central computing must allow whatever the solution partitions. This raises the importance of squeezing data during transmission to manage latency and power consumption.
In addition to performance, power and cost limitations, automotive systems must be considered for service life and reliability. The entire service life of the vehicle may be 10,20 years or more, during which software and AI models may need to be upgraded to fix detected problems or meet changing regulatory requirements.
These constraints require a careful balance in radar system design between high performance/low power in hardware and flexibility in software to adapt to changes. This is not new, but radar pipelines present some unique requirements compared to vision pipelines.
Assembly line challenge
The complete radar system flow is shown in the figure below, from the transmitting antenna and the receiving antenna to the target tracking and classification. The antenna configuration can be 44 (Tx/Rx) and 4864 for HD radar. In the system pipeline after the radar front end, the fast Fourier transform (FFT) of distance information is calculated first, and then the FFT of Doppler information is calculated. This is followed by a digital beamforming phase used to manage digital flow from multiple radar antennas.
A complete radar system pipeline extends from transmit / receive antennas all the way to target tracking and classification.(Source: Ceva)
So far, the data remains to some extent, a "raw signal". The constant false alarm rate (CFAR) phase is the first step to separate the real target from the noise. The arrival angle (AoA) calculation completes the positioning of the target in the 3D space, while the Doppler velocity calculation adds a fourth dimension. Finally, the pipeline ends with target tracking (e. g. using the extended Kalman filter EKF) and object classification (usually using AI models defined by OEM).
First, the radar system must support effective parallelism at the front end to process large antenna arrays, pushing multiple image streams simultaneously through the pipeline and simultaneously providing a throughput of 25 to 50 frames per second.
The amount of data does not only depend on the number of antennas. They will feed into multiple FFT, each FFT can be very large, up to 1K windows (bin). These transformations will eventually transfer the data to a point cloud, which itself can easily reach half a byte.
Clever memory management is essential to maximize throughput. Take the two stages of distance FFT and Doppler FFT as an example. The data written to memory from the distance FFT is 1 D data, written by row. Doppler FFT requires access to this data by column, and without special support, the address jump implied by column access requires multiple burst reads for each column, thus greatly reducing the viable frame rate.
The CFAR is another challenge. CFAR has multiple algorithms, and some algorithms are easier to implement than others. The state-of-the-art algorithm today is orderly statistics CFAR (OS-CFAR), which is particularly powerful when multiple targets exist (common in automotive radar applications). Unfortunately, OS-CFAR is also the most difficult algorithm to implement, requiring statistical analysis in addition to linear analysis. Still, all truly competitive radar systems today should use OS-CFAR.
During the tracking stage, both position and speed are important. They are all three-dimensional (X, Y, Z for position, Vx, Vy, Vz speed). Some EKF algorithms abandon a dimension (usually altitude) to simplify the problem, which is called 4 D EKF. In contrast, high-quality algorithms use all six dimensions (6 DEKF). The main consideration for all EKF algorithms is how many targets it can track.
While aircraft may only need to track a few targets, high-end car radars are now capable of tracking thousands of targets. This is worth keeping in mind when considering the architecture of high-end and (slightly smaller) medium-range radar systems.
All challenges in the classification phase are centered on the AI model and are not within the scope of this radar system. These AI models will usually be run on a dedicated NPU.
Implement the challenge
An obvious question is, what platforms can best meet the needs of all of these radar systems? It must have strong signal processing capability, must meet the throughput target (25-50 fps) at low power consumption, and must also be software programmable to be adaptable over a longer service life. This requires a DSP.
However, it must also process multiple input streams simultaneously, which requires a high degree of parallelism. Some DSP architectures support parallel cores, but for many signal processing functions (such as FFT), the number of cores required may be too many, and the hardware accelerator may be more appropriate.
At the same time, the solution must be able to expand across regional automotive architectures: low-end systems for edge applications, providing data for high-end systems in regional or central applications. It should provide a common product architecture and a common software stack for each application, while simply expanding to accommodate all levels from the edge to the central controller.
- |
- +1 赞 0
- 收藏
- 评论 0
本文由JWM转载自Kinghelm official website,原文标题为:Challenges in designing automotive radar systems,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
相关推荐
金航标带你理解HDMI接口及如何挑选合适的HDMI线缆
对于那些在弱电领域或者日常电气使用中经常遇到各种接口问题的朋友来说,HDMI接口常常是一个棘手的难题。在本文的分享中,金航标带你将一起深入了解HDMI接口及其相关知识。
金航标FPC连接器选型表
金航标FPC连接器选型:每排PIN数:2-60,间距(mm):0.5-2.5mm,塑胶厚度(mm):2.5-3.8mm,多种安装方式:翻盖/直插/弯插/立贴/卧贴/掀盖等。
产品型号
|
品类
|
间距(mm)
|
类别
|
安装方式
|
PIN
|
高度(mm)
|
KH-0.5-H3.25-6PIN
|
FPC连接器
|
0.5mm
|
翻盖下接
|
卧贴
|
6P
|
3.25mm
|
选型表 - 金航标 立即选型
金航标天线选型表
金航标提供汽车定位天线,陶瓷天线,北斗天线,胶棒天线,蓝牙天线,吸盘天线,GPS天线,PCB天线,WIFI蓝牙FPC天线,玻璃钢天线,WiFi天线,4G通讯天线,吸盘弹簧天线,定位天线,通讯天线,羊角天线,一字天线,WIFI胶棒天线选型:信号2.4-6G,阻抗(Ω):50Ω,驻波比:≤1.5: 1/≦1.3/≤2.0/≤2.5等,最大功率(W):3-50W,极化方式:垂直/线性/水平极化/右旋圆极化等。
产品型号
|
品类
|
频率
|
信号
|
线材
|
阻抗(Ω)
|
驻波比
|
增益(dBi)
|
最大功率(W)
|
尺寸
|
规格
|
极化方式
|
方位波束宽度
|
YL46-4G-SMA-174-3M
|
汽车定位天线
|
698-960/1710-2700MHz
|
4G
|
RG174线
|
50Ω
|
≤2.0
|
2.15dBi
|
40W
|
46*16mm
|
SMA镀金内螺内针
|
垂直
|
全向
|
选型表 - 金航标 立即选型
金航标直插式排母连接器KH-1.27FH-2X8P-H4.3:1.27mm精细间距,电流额度达到1A
金航标KH-1.27FH-2X8P-H4.3排母连接器以其精细的间距、低矮的高度和稳定的电气性能,成为了消费电子产品和工业控制板等领域中的理想选择。其出色的性能表现和广泛的应用潜力,不仅展现了金航标在电子连接器领域的领先地位,也为现代电子产品的设计和发展提供了有力的支持。
金航标RJ45连接器选型表
金航标提供RJ45连接器选型:额定电压(V):125 VAC RMS,额定电流:1.5A,LED:不带LED/带LED,类别:RJ插座,规格:弯插/直插/全包全塑等。
产品型号
|
品类
|
种类
|
LED
|
规格
|
颜色
|
额定电流
|
额定电压
|
使用寿命
|
接触电阻
|
KH-RJ45-56-8P8C-D-T
|
RJ45网络连接器
|
RJ45网络连接
|
带LED
|
带弹
|
黑色
|
1.5A
|
125 VAC RMS
|
至少750次循环
|
最大35mΩ
|
选型表 - 金航标 立即选型
金航标转接线选型表
金航标提供转接线选型,由套管、接头、端子、公针、公头同轴线/射频线等组成的射频连接线套件,线长(mm):20-14000,种类:TNC转IPEX/IPEX转SMA/SMA转IPEX/MMCX转SMA/MMCX转IPEX/MMCX转BNC等,颜色:黑色/白色/灰色/棕色/蓝色,套数:两件套/四件套/五件套/六件套。
产品型号
|
品类
|
种类
|
线长(mm)
|
线材
|
颜色
|
规格
|
KH-TNC-113IPEX-65
|
连接线转接线
|
TNC转IPEX
|
65
|
RG113线
|
黑色
|
TNC母头母针直头镀镍转I-PEX
|
选型表 - 金航标 立即选型
金航标TF卡座连接器KH-TF08-H1.8:确保数据流畅传输的关键组件
金航标KH-TF08-H1.8连接器凭借其卓越的性能参数、良好的兼容性和易用性,以及出色的耐用性和抗磨损性能,成为了确保数据流畅传输的关键组件。无论是对于消费者还是对于制造商来说,选择这样一款优质的TF卡座连接器,都是明智之举。
金航标排针选型表
金航标提供排针选型:PIN数:2-40PIN,间距(mm):0.8-2.54mm,类别:单排/双排/三排,额定电流(A):1-3A,多种安装方式:直插/立贴/弯插/卧贴/贴片。
产品型号
|
品类
|
间距(mm)
|
排针数
|
安装方式
|
额定电流(A)
|
PIN
|
度数
|
塑胶高度(mm)
|
PA(mm)
|
PB(mm)
|
PC(mm)
|
类别
|
KH-2.54PH180-3X40P-L11.5
|
排针
|
2.54mm
|
三排
|
直插
|
3A
|
3x40P
|
180度
|
2.5
|
6.0
|
2.5
|
3
|
常规
|
选型表 - 金航标 立即选型
金航标HDMI连接器选型表
金航标提供HDMI连接器选型:配合力(N、KGF):44.1N/4.0KGF/4.5KGF,耐久性(次):5000-10000次,电流(A):0.3-5A,电压(V):最大40V,多种材料:铜镀金/铜镀镍/铁镀镍/铁镀金/半金亮锡等
产品型号
|
品类
|
类别
|
材料
|
配合力
|
解锁力
|
耐久性
|
电流
|
电压
|
耐受电压
|
接触电阻
|
绝缘电阻
|
工作温度范围
|
KH-HDMI-0035-XK
|
HDMI连接器
|
母座
|
铜镀金
|
最大44.1N
|
7-25N
|
最少5000次循环
|
0.5A
|
最大40V
|
最小500V AC(未匹配)
|
最大30MN
|
最小100MN(未匹配)
|
-20℃至+85℃
|
选型表 - 金航标 立即选型
金航标短路帽/跳线帽KH-2.54TXM-BK-6.5H-G:电路安全与稳定的守护者
金航标KH-2.54TXM-BK-6.5H-G短路帽/跳线帽是金航标品牌下的一款高性能电子元器件。它以其尺寸标准、材料优良、连接稳定等特点,在电工电气系统中发挥着不可替代的作用。无论是保护电路不受短路和损坏的危害,还是提高电路的整体性能和安全性,Kinghelm金航标KH-2.54TXM-BK-6.5H-G都展现出了出色的表现。
金航标FFC连接线/FFC软排线/FFC排线选型表
金航标提供FFC连接线/FFC软排线/FFC排线选型:导体芯数 (N):4-40P,间距(mm)0.5mm/1mm,线长(mm)30-1000mm,插入厚度(mm):0.3±0.02mm,正向/反向。
产品型号
|
品类
|
导体芯数 (N)
|
间距(mm)
|
线长(mm)
|
正向/反向
|
颜色
|
插入厚度(mm)
|
线身厚度(mm)
|
储存湿度
|
KH-FFC-A0.5-10P-100MM
|
FFC连接线
|
10P
|
0.5mm
|
100mm
|
同向
|
白色
|
0.3±0.02mm
|
0.12±00.2mm
|
储存湿度30~60RH%
|
选型表 - 金航标 立即选型
金航标插拔式接线端子选型表
金航标提供插拔式接线端子选型:间距(mm):2.54-7.62mm,PIN数:2-18P,额定电流(A):5-15A,额定电压(V):300V,安装方式:直针/弯针/直插/孔座,扭力(N.m):0.2-0.4N.m。
产品型号
|
品类
|
类别
|
间距(mm)
|
PIN数
|
安装方式
|
额定电流(A)
|
额定电压(V)
|
绝缘强度(V)
|
绝缘电阻(MΩ)
|
KH-F400V-5P-5.08G
|
插拔式接线端子
|
插座
|
5.08mm
|
5P
|
直针
|
15A
|
300V
|
AC2000V/min
|
DC500V时500MΩ以上
|
选型表 - 金航标 立即选型
金航标KH-BM2.54-2P红色拨码开关,采用平拨、凸起式设计,额定电流100mA
金航标KH-BM2.54-2P红色拨码开关凭借其独特的设计、卓越的性能和广泛的应用领域,在市场上赢得了广泛的关注和认可。它不仅为用户提供了简单实用、灵活可靠的拨码开关解决方案,还为电子设备的功能选择和配置提供了便捷的操作方式。
金航标轻触开关选型表
金航标提供轻触开关选型,额定电流(mA):50mA,额定电压(V)12V,开关长度(mm):2-12mm,开关宽度(mm):1.8-12mm,开关高度(mm):0.35-24mm,机械寿命(次):5万次-30万次,以及多种安装方式:卧贴、立贴、直插、卧插。
产品型号
|
品类
|
额定电流(mA)
|
额定电压(V)
|
安装方式
|
开关长度(mm)
|
开关宽度(mm)
|
开关高度(mm)
|
按钮形状
|
引脚样式
|
按钮/盖帽颜色
|
机械寿命(次)
|
带支架
|
KH-2435-CAJ
|
轻触开关
|
50
|
12
|
卧贴
|
4.6
|
1.8
|
3.5
|
矩形按钮
|
SMD接片
|
黑色
|
8万次
|
否
|
选型表 - 金航标 立即选型
金航标射频板端座子选型表
金航标提供射频板端座子/RF射频同轴连接器选型:种类:SMA板端/FAKRA板端/MMCX板端/MCX板端/IPEX板端等,类别:公头/母头,阻抗(Ω):50Ω-75Ω,度数:90°-180°,额定电压(V):50-335V,尺寸(mm):1-30.8mm。
产品型号
|
品类
|
种类
|
规格
|
类别
|
尺寸
|
KH-SMA-KE8-G48H
|
射频板端座子
|
SMA板端
|
偏脚
|
母头
|
13.5mm
|
选型表 - 金航标 立即选型
电子商城
登录 | 立即注册
提交评论