Innovative Applications and Future Prospects of AI in Antenna Design
With the rapid development of technology, the complexity of telecommunications systems is increasing, and traditional design methods led by human engineers are facing unprecedented challenges. To address this trend, artificial intelligence (AI) is gradually occupying a central role in the design and operation of telecommunications systems. The introduction of AI aims not only to solve current technical problems but also to explore the infinite possibilities of the future.
In the field of telecommunications, loss is a long-standing and difficult-to-completely-solve issue. Whether it is noise from the radio hardware itself or attenuation of signals during transmission, both significantly affect the performance of communication systems. Especially with the explosive growth in wireless communication demand driven by the Internet of Things, the requirements for high bit rates and low latency have become increasingly stringent, making the loss problem even more prominent.
In the face of this dilemma, AI, especially machine learning technology, offers new solutions. By training neural networks, AI can continuously optimize performance in complex situations involving large amounts of data and may even design communication signals superior to those created by human engineers. This concept is not just a whim but is based on extensive experiments and research results. For example, in some NASA space communication system experiments, AI has successfully achieved efficient wireless communication in extremely complex environments.
Traditionally, communication engineers have invented various techniques to reduce signal loss, such as multi-channel transmission and multi-antenna reception. However, while these methods are effective, they also make wireless devices more complex and fail to fundamentally solve the loss problem. The introduction of AI has the potential to radically change this situation. By training neural networks, AI can learn the loss characteristics of different channels and design communication signals that are more suited to specific environments accordingly.
Channel autoencoders are an important application of AI in antenna design. They utilize deep neural networks to train encoders and decoders to jointly form efficient modems. Compared to traditional modems, channel autoencoders can be optimized for specific wireless channels, creating communication signals that are more suitable for those channels. This not only improves signal transmission efficiency but also significantly reduces loss.
The working principle of channel autoencoders is not complicated. It first collects information about interference and distortion in the signal transmission through the channel via channel probing. Then, using this information, the deep neural network works, with the encoder modulating data into wireless signals and the decoder reconstructing the original data from the received signals. During this process, the neural network provides feedback and adjustments based on the metrics engineers want to optimize (such as error rate, power consumption, etc.) until optimal performance is achieved.
The advantage of AI in antenna design lies not only in its powerful data processing capabilities but also in its ability to quickly adapt to new environments and demands. Whenever a new communication channel emerges, machine learning systems can train corresponding autoencoders in a short time without the extensive time and manpower required for research and development using traditional methods.
However, despite the huge potential demonstrated by AI in antenna design, overcoming many challenges is necessary to achieve its widespread application. For example, channel autoencoders require further technical development and refinement of the underlying computer architecture; to become part of existing wireless systems, they must undergo rigorous standardization processes. Additionally, the introduction of data science and machine learning knowledge poses new skill requirements for communication engineers.
Nonetheless, we still have reason to believe that AI will play an increasingly important role in future antenna design. It will not only help us solve current technical problems but will also lead us into a more intelligent and efficient communication era.
- |
- +1 赞 0
- 收藏
- 评论 0
本文由上山打老虎转载自UIY Official Website,原文标题为:Innovative Applications and Future Prospects of AI in Antenna Design,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
相关推荐
AI在天线设计中的革新应用与未来展望
随着科技的飞速发展,电信系统的复杂性日益提升,传统由人类工程师主导的设计方式正面临前所未有的挑战。为应对这一趋势,人工智能(AI)正逐步在电信系统的设计与运行中占据核心地位。AI的引入,不仅是为了解决当前的技术难题,更是为了探索未来的无限可能。本文中优译来为大家介绍AI在天线设计中的革新应用与未来展望,希望对各位工程师朋友有所帮助。
解析USB AI降噪麦克风
USB AI降噪麦克风是一种结合了AI技术的高效音频解决方案,能够显著提升音频采集质量,适合远程会议、直播、语音助手等多种场景。飞腾云会持续精进在USB AI降噪麦克风方向的研究,并进一步优化其AI算法,提供更精准、更高效的降噪效果。
探讨SD NAND/TF卡在AI领域的优势
在当今快速发展的科技时代,人工智能(AI)已经成为推动各行各业变革的重要力量。AI技术的进步不仅依赖于算法和模型的创新,更离不开底层硬件技术的支持。SD NAND技术作为一种高效、可靠的数据存储解决方案,在AI领域的应用日益广泛。
【IC】美格推出综合AI算力高达48Tops的高算力AI模组SNM970,采用4nm高端制程
美格智能则基于高通QCS8550处理器,开发了旗舰级高算力AI模组SNM970,以技术和产品创新加速AI应用的落地生根。该模组芯片采用4nm高端制程,综合AI算力高达48Tops。SNM970模组凭借领先的设计研发能力和强大的AI算力。
优译滤波器选型表
优译提供带通滤波器/高通滤波器/低通滤波器/带阻滤波器选型,多种不同带通频率,插损(dB):0.2-9dB,驻波比:1.2-2,功率(W):2-100W,连接形式:BNC,N,SMA/N,SMA/SMA/N,SMA,BNC/N, SMA/SMA-F/BNC-F等。
产品型号
|
品类
|
带阻频率(MHz)
|
通带频率(MHz)
|
阻带抑制Min(dB)
|
驻波比
|
插入损耗(dB)
|
功率(W)
|
连接形式
|
温度范围(°C)
|
外形尺寸-长x宽x高(mm)
|
UIYBSF3525A616T638NF
|
带阻滤波器
|
616~638MHz
|
50~576MHz 678~800MHz
|
40
|
1.8
|
2.5
|
5
|
SMA, N
|
-55~+85
|
35×25×20
|
选型表 - 优译 立即选型
涂鸦持续助力开发者:推出Tuya物联网平台阿里云版及多款AI助手
涂鸦推出了Tuya物联网平台阿里云版智慧物联网解决方案。该解决方案基于AI云原生技术架构,提供了包括设备接入、管理、消息通信、产品开发、升级运维等深度融合AI功能的特色服务,覆盖智能设备的整个生命周期。涂鸦智能凭借其云平台开发及运营的深厚积淀,以及对AI技术的深入探索,于本次大会推出了App智能AI助手与T-smart平台AI助手两款创新AI产品,正式开启了AI开发新篇章。
Sora再掀AI热潮,特控AI服务器EIS-H4213D筑牢算力基座
特控AI服务器EIS-H4213DZ采用英特尔®至强®可扩展系列处理器平台,支持10张GPU加速卡,能为大模型训练和推理提供强有力的算力支撑,满足实时数据处理、训练和推理等关键需求,可充分满足3D渲染、科学研究领域、虚拟化、AI人工智能、深度学习和人脸识别等领域。
优译隔离器选型表
优译宽带隔离器、波导隔离器、同轴隔离器、微带隔离器、微带基片隔离器、射频隔离器、嵌入式带线隔离器、表面封装隔离器(SMT隔离器)、双节隔离器,提供多种频率范围,VSWR:1.15-1.45,VSWR Max:1.15-1.9,Forward Power(W):2-1500W,Reverse Power(W):1-300W,低插损、高隔离、高功率;可按客户要求定制.
产品型号
|
品类
|
Freq. Range(MHz、GHz)
|
Insertion Loss Max(dB)
|
Isolation Min(dB)
|
VSWR
|
Forward Power(W)
|
Reverse Power(W)
|
Connector Type
|
Temp.(°C)
|
UIYCDI16080A25T30SF
|
双节隔离器
|
25 ~ 30 MHz
|
7
|
24
|
1.45
|
50
|
50
|
SMA-F
|
+10 ~ +60
|
选型表 - 优译 立即选型
优译介绍常用的九种射频连接器
RF射频接头种类繁多,为满足各种频率、物理结构需求人们设计了各种各样的接头形式,每种型号的接头都要求符合相应的接头标准。主要关注其频率范围、阻抗、耐压值、驻波比、尺寸大小等,因此不同的连接器有着不同的属性适用于不同场景。下面优译就来为您介绍。
优译环行器选型表
优译同轴环行器、表面封装环行器(SMT环形器)、微带环行器、单节微带环行器、微带基片环行器、嵌入式带线环行器选型;多种频率范围,Insertion Loss Max(dB):0.2-5dB,Isolation Min(dB):1.4-30dB,VSWR Max:1.15-1.8,Forward Power(W):2-1500W,Reverse Power(W):2-1500W,低插损、高隔离、高功率;可按客户要求定制。
产品型号
|
品类
|
Freq. Range(MHz、GHz)
|
Insertion Loss Max(dB)
|
Isolation Min(dB)
|
VSWR Max
|
Forward Power(W)
|
Reverse Power(W)
|
Connector Type
|
Temp.(℃)
|
UIYWC6880A54T59
|
波导环行器
|
5.4 ~ 5.9 GHz
|
0.3
|
23
|
1.2
|
100
|
100
|
WR137(BJ70)
|
-40 ~ +85
|
选型表 - 优译 立即选型
AI Chip Shortage: Nvidia‘s Blackwell GPUs and the Future of AI Technology
Nvidia‘s Blackwell GPUs are sold out for 12 months due to high demand from major clients like Amazon, Dell, Google, Meta, and Microsoft. Memory chips like HBM are also in high demand, with manufacturers‘ 2024 production fully booked. TSMC‘s 3nm and 5nm process technologies are driving growth, but concerns about an AI market bubble and sustainability of Nvidia‘s stock growth exist. Despite this, strong demand for AI is expected to continue, driven by tech firms‘ significant investments in AI infrastructure.
优译功分器选型
优译提供2路/3路/4路/8路/16路功分器器选型:多种频率,Isolation Min(dB):15-20dB,VSWR Output Max:1.2-1.8,Forward Power(W):10-50W,Reverse Power(W):1-3W。
产品型号
|
品类
|
Freq.Range(MHz,GHz)
|
Insertion Loss Max(dB)
|
Isolation Min(dB)
|
VSWR Input Max
|
VSWR Output Max
|
Phase Unbalance
|
Amplitude Unbalance(dB)
|
Forward Power(W)
|
Reverse Power(W)
|
Connector Type
|
Temp.(℃)
|
UIY3PD4152A2T4SF
|
3路功分器
|
2.0 ~ 4.0GHz
|
0.6 (Split 4.8dB)
|
18
|
1.3
|
1.3
|
±5˚
|
±0.4
|
30
|
3
|
SMA-F
|
-55 ~ +85
|
选型表 - 优译 立即选型
优译定向耦合器选型表
优译提供定向耦合器选型:频率范围(GHz):0.136-18GHz,耦合度(dB):5-40dB,插损(dB):0.2-1dB,方向性(dB):10-20dB,驻波比:1.25-1.5,功率(W):50-200W。
产品型号
|
品类
|
频率范围(GHz)
|
耦合度(dB)
|
藕合平坦度(dB)
|
插损(dB)
|
方向性(dB)
|
驻波比
|
功率(W)
|
连接形式
|
温度(°C)
|
尺寸-长x宽x高(mm)
|
UIYDCP14337B136T174C20NF
|
定向耦合器
|
0.136~0.174
|
5~40
|
±1.0
|
0.2
|
20
|
1.25
|
200
|
N
|
-20~+70
|
143×37×20
|
选型表 - 优译 立即选型
解析什么是AI芯片?AI芯片的种类有哪些
AI芯片是指专门设计用于加速人工智能应用的处理器,旨在加速AI应用的运算和效率。这些芯片包括GPU、TPU、ASIC、FPGA等,专注于提高AI任务的处理效率和速度。与传统的CPU和GPU相比,AI芯片在处理机器学习和深度学习任务时更为高效,能够大幅提高数据处理速度,降低能耗。
优译携射频隔离器等产品参加2024欧洲微波展
2024年9月24日至27日,在巴黎凡尔赛门,优译与您相约2024欧洲微波展。将展示我们的主要产品:射频隔离器/射频环行器/射频滤波器,衰减器/终端,功分器,双工器/三工器,TX RX 合路/分路系统,电桥/同频合路器,定向耦合器,波导同轴转换。
电子商城
服务
可定制射频隔离器/环行器(10M-40GHz),双工器/三工器(30MHz/850MHz-20GHz),滤波器(DC-20GHz),功分器,同轴负载,同轴衰减器等射频器件;可定制频率覆盖DC~110GHz,功率最高20KW。
最小起订量: 1 提交需求>
登录 | 立即注册
提交评论