SiC FETs are enablers for more efficient motor drives and faster charging
EV uptake is set to increase but ‘range anxiety’ and charge times are still barriers to general acceptance. Wide bandgap semiconductors are enablers for more efficient motor drives and faster charging and new SiC FETs are best performers.
With the latest ‘hyper car’ electric vehicles pushing out nearly 2,000 bhp, things are getting seriously fast on the roads, but range and charge rate are still issue. It’s all well and good getting from charging point A to charging point B at light speed, but if you have to wait there for an hour, it’s not so much fun.
Cutting down on the recharge time would ease a driver’s anxiety if they didn’t feel the need to squeeze the last mile out of the battery to avoid frequent long stops – ultra-rapid chargers at 350kW help but they are few and far between so there is extreme pressure to roll out more and upgrade existing charging stations.
Fast and rapid chargers convert AC line voltages to DC, typically around 400V for most EVs but also 800V for high-performance cars such as the Porsche Taycan. The heart of these chargers is an AC-DC converter that uses IGBT or silicon MOSFET switch technology depending on power level. This can be a difficult choice as IGBTs can only switch relatively slowly because of dynamic losses and therefore force the use of large, costly and lossy magnetic filters. MOSFETs can switch much faster with acceptable dynamic losses and smaller magnetics but high voltage types have high conduction losses. With these losses representing wasted energy and money, and forcing the over-sizing of components to keep temperatures within bounds, better switches are sorely needed.
Wide bandgap (WBG) semiconductors are the answer to many applications needing better efficiency in the shape of SiC or GaN switches and diodes. They are not for the faint-hearted though; layout and driving them correctly is critical, and taming the hypercar-matching speed is necessary to avoid stress and high EMI levels. Practically, converter designs with WBG technology need to be from the ground up to get the best benefit. There is an exception though; a combination part comprising a Si-MOSFET and SiC JFET in a cascode configuration has particular advantages. Called a SiC FET, gate drive is easy, compatible with existing Si-MOSFETs and IGBTs with a wide margin, normalized on-resistance is lower than SiC MOSFETs and GaN and they have inherent high immunity to avalanche effects with over-voltages. Immunity to short circuits is also high with a self-limiting action. Switching losses are generally lower than other WBG devices due to lower device capacitances and all of the general advantages of SiC remain; high critical breakdown voltage, high-temperature operation and high thermal conductivity. Current best-in-class devices from UnitedSiC are achieving under 7 milliohms on-resistance in 650V devices and under 10 milliohms for 1200V types that might be used in 480VAC line systems for the highest power chargers.
We’ve spoken in generalizations so far, but some figures will illustrate the difference between IGBTs and SiC FETs available in the same package in the 600/650V class, shown in Table 1. Every parameter is better with the SiC devices, meaning fewer losses for a part that can be a near drop-in replacement.
Table 1: 600/650V class IGBTs and SiC FETs compared.
SiC FETS also find a natural home in the necessary power factor correction stage in chargers and also as synchronous rectifiers to replace diodes. This can deliver significant additional power savings, for example, a 350kW rapid charger for a 400V battery has to deliver 875A through a diode bridge arrangement. The rectifiers could be assembled from parallel SiC JBS diodes or SiC FETs configured as synchronous rectifiers. Assuming 100A through each at 50% duty cycle, at 125°C the diodes would drop 2V with a loss of 100W and the SiC FETs would drop 0.9V with just 45W loss, less than half the SiC diode value.
SiC FETs are available in TO-247-4L packages so in many instances can directly change-out IGBTs and Si-MOSFETs, giving the circuit an immediate turbo-boost in efficiency. New designs benefit even more as frequencies can be pushed up without sacrificing efficiency, and associated passive components, particularly magnetics, can be downsized.
This makes Wide bandgap semiconductors such as SiC FETs the ‘Rolls Royce’ of switches.
- |
- +1 赞 0
- 收藏
- 评论 0
本文由赚钱养太阳转载自UnitedSiC,原文标题为:Charge fast – think fast – think SiC,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
相关推荐
【应用】采用SiC FET提升图腾柱PFC级能效,实现99.3%以上的效率
图腾柱PFC电路能显著改善交流输入转换器的效率,相对于主流半导体开关技术,SiC FET能突破现有的局限性。UnitedSiC使用为750V/18毫欧/TO-247-4L开尔文连接封装的第四代器件构建了图腾柱PFC级演示板,效率达99.37%。
【应用】SiC FET可替代Si-MOS和IGBT用于快速充电站,显著节省功率并缩减相关无源组件的体积
宽带隙(WBG)半导体为SiC或GaN开关和二极管形式,是许多需要更高能效的应用的解决方案。SiC FET的栅极驱动简单,可兼容宽裕量且其常态化导通电阻低于SiC MOSFET和GaN的现有Si-MOSFET和IGBT。采用TO-247-4L封装的SiC FET在许多实例中可以直接替换IGBT和Si-MOSFET,直接大幅提升电路的效率。
【应用】SiC FET UF3SC065007K4S用于大电流电池充电系统,相比JBS二极管大幅降低导通损耗
UF3SC065007K4S是UnitedSiC公司的SiC FET,导通阻抗仅为6.7mR,具有超低的栅极电荷和出色的反向恢复特性。在大电流电池充电系统中,常规JBS二极管整流工作损耗较大,热量负担也较大,使用UF3SC065007K4S同步整流能够有效减小工作损耗,减小热量负担,效提高系统效率和可靠性。
【经验】SiC FET关断时VDS尖峰和振荡问题的解决方法
UnitedSiC的SiC FET能直接替代Si MOSFET,但其高开关速度也可能会使关断VDS电压产生尖峰和震荡,使系统的EMI变差。关断时的VDS尖峰和振荡产生的根本原因是高速开关过程中di/dt在杂散电感上产生了较高的感应电压。本文将给出并对比几种解决方案。
SiC FET用户指南
型号- UJ3C065080T3S,UJ4C075018K4S,UF4SC120030K4S,UF3C065040T3S,UF3C120080K3S,UJ3C065030K3S,UF3C065040B3,UF3C065080B3,UJ4C075023K3S,UF4SC120053K4S,UJ4SC075009K4S,UJ4C075033K3S,UJ3C065080B3,UJ3C120040K3S,UF3C065030T3S,UF4SC,UF3SC120016K3S,UF3C065080K3S,UJ4SC,UF3C065030K4S,UJ3C065030B3,UF3CXXXYYYK3S,UJ4SC075006K4S,UF3SC065007K4S,UF3C120040K4S,UF3C065030B3,UF3C120400K3S,UJ4CXXXK3S,UF3C120150B7S,UF3C065040K4S,UJ4C075044K3S,UJ3C065030T3S,UJ4C,UJ3C120070K3S,UF3C065030K3S,UF4C,UJ3C120150K3S,UJ4C075060K4S,UF3C065080B7S,UF3C170400B7S,UF4SC120070K4S,UF3CXXXYYYK4S,UF3SC120009K4S,UF3C120080B7S,UF3C065080T3S,UF3C120040K3S,UF3C120150K4S,UF3C065040K3S,UJ3C120080K3S,UJ3C065080K3S,UF3SC,UF3C120080K4S,UJ4C075044K4S,UJ3C,UJ4C075018K3S,UF3C,UF3SC065030B7S,UJ4C075023K4S,UJ4C075060K3S,UJ3CXXXYYYK3S,UF4SC120053K3S,UF4SC120070K3S,UF SERIES,UJ4SC075011K4S,UJ4C075033K4S,UF3C120150K3S,UF3C170400K3S,UF4SC120023K4S,UF3SC120040B7S,UF3SC065040B7S,UF3SC120016K4S,UF3C065080K4S
1200V第4代SiC FET具有业界最佳性能,为高压市场提供最佳SiC电源解决方案
型号- UF4SC120030K4S,UF4C120053K3S,UF4C120030K4S,UF4SC SERIES,UF3C120040K4S,UF4C SERIES,UF4C120070K3S,UF4C,UF4C120070K4S,UF4C120053K4S,UF4SC120023K4S,UF4SC
UnitedSiC FET用户指南
型号- UJ3C065080T3S,UJ4C075018K4S,UF3C065040T3S,UF3C120080K3S,UF3SC065040D8S,UJ3C065030K3S,UF3SC065030D8S,C1808C681JGGAC7800,UF3C065040B3,UF3C065080B3,UJ4C075023K3S,UJ4SC075009K4S,CRCW201010R0JNEFHP,UJ4C075033K3S,UJ3C065080B3,UJ3C120040K3S,UF3C065030T3S,UF3SC120016K3S,UF3C065080K3S,UJ4SC,UF3C065030K4S,CRCW25124R70JNEGHP,UJ3C065030B3,UF3CXXXYYYK3S,UJ4SC075006K4S,C1206C680JGGAC7800,UF3SC065007K4S,UF3C120040K4S,UF3C065030B3,UF3C120400K3S,UJ4CXXXK3S,UF3C120150B7S,UF3C065040K4S,UJ4C075044K3S,C1206C151JGGAC7800,UJ3C065030T3S,UJ4C,UF3C065030K3S,UJ3C120150K3S,UF3C120400B7S,UJ4C075060K4S,CRCW20104R70JNEFHP,UF3C065080B7S,UF3C170400B7S,UF3CXXXYYYK4S,202R18N101JV4E,SR1206FR-7W4R7L,UF3SC120009K4S,UF3C120080B7S,KTR18EZPF10R0,UF3C065080T3S,UF3C120040K3S,UF3C120150K4S,UF3C065040K3S,UJ3C120080K3S,UJ3C065080K3S,UF3SC,KTR18EZPF4R70,UF3C120080K4S,UJ4C075044K4S,CRCW251210R0JNEGHP,UJ3C,UJ4C075018K3S,UF3C,UF3SC065030B7S,C1206C221JGGAC7800,C1210C331JGGACTU,SR1206FR-7W10RL,UJ4C075023K4S,UJ4C075060K3S,UJ3CXXXYYYK3S,UJ4C075033K4S,UJ4SC075011K4S,UF3C120150K3S,UF3C170400K3S,UF3SC120040B7S,UF3SC065040B7S,UF3SC120016K4S,UF3C065080K4S,202R18N470JV4E
SiC FET的起源和发展—与SiC MOS及其他替代技术的性能比较
使用宽带隙半导体作为高频开关为实现更高的功率转换效率提供了有力支持。一个示例是,碳化硅开关可以实施为SiC MOSFET或以共源共栅结构实施为SiC FET。本文追溯了SiC FET的起源和发展,直至最新一代产品,并将其性能与替代技术进行了比较。
具有业界出众性能的1200V第四代SiC FET为高压市场提供优秀SiC功率解决方案
UnitedSiC扩充了1200V产品系列,将突破性的第四代SiC FET技术推广到电压更高的应用中。新UF4C/SC系列中的六款新产品的规格从23毫欧到70毫欧,现以TO247-4L(开尔文连接)封装提供,而1200V的53毫欧和70毫欧SiC FET还以TO247-3L封装提供。
【经验】适用于SiC FET的简单RC缓冲电路,可解决电压过冲和振铃等问题
随着我们的产品接近边沿速率超快的理想半导体开关,电压过冲和振铃开始成为问题。适用于SiC FET的简单RC缓冲电路可以解决这些问题,并带来更高的效率增益。UnitedSiC将在本文中进行详细的分析。
【产品】1200V/80mΩ的SiC FET UF3C120080K3S,最高工作温度175℃
UnitedSiC的SiC FET(碳化硅场效应晶体管)采用了独特的共源共栅(cascode)电路配置,将常开型SiC JFET与Si MOSFET共同封装在一起,从而构建出常关型SiC FET器件。UF3C120080K3S是一款1200V的SiC FET。
UnitedSiC提供1200V第四代SiC FET,具有出色的热能力,可助力找到您的高压功率设计的亮点
UnitedSiC(现名Qorvo)提供了1200V第四代器件,它们具有一系列导通电阻额定值,可满足通常使用800V总线的各种应用的需要。欢迎用新的1200V第四代SiC FET找到您的高压功率设计的亮点。
可直接替换IGBT和Si MOS的第三代SiC FET,提供革命性的功率转换性能
现在已经出现了第三代SiC FET,这是一种Si-MOSFET和SiC JFET的共源共栅布置,处于宽带隙技术的前沿。作为IGBT和Si-MOSFET的直接替代品,SiC FET用于升级电动机驱动、UPS逆变器、焊机、大功率交直流和直流转换器等。
【经验】在高速开关碳化硅场效应管(SiC FET)中接入RC缓冲电路,能有效解决高速开关损耗以及振铃效应
基于半桥结构这一典型应用,本文介绍了在开关速度快的SiC器件的漏极和源极之间接入RC缓冲吸收电路的优势,解决了如何抑制过多的电压冲击和振铃噪声的问题。此外本文还介绍了一种将RC缓冲吸收电路使用在高速碳化硅开关器件的实用方案——UnitedSiC推出的UF3C系列SiC FET,该方案通过了双脉冲测试的结果验证。
【产品】UnitedSiC推出新的UF4C/SC系列1200V第四代SiC FET 非常适合主流的800V总线结构
UnitedSiC宣布推出新一代1200V碳化硅(SiC)场效应晶体管(FET)系列,这些产品在导通电阻方面具备业界出众的性能表征。新的UF4C/SC系列1200V第四代SiC FET非常适合主流的800V总线结构,这种结构常见于电动车车载充电器、工业电池充电器、工业电源、直流太阳能逆变器、焊机、不间断电源等应用。
现货市场
登录 | 立即注册
提交评论