How to Reduce Specific System Costs with Silicon Carbide Devices?
Silicon carbide (SiC) has outstanding properties which makes it a very useful material for power semiconductor devices in multiple applications, such as renewable energy systems and inverters for electric vehicles. However, the specific costs ($/cm²) of SiC devices are and will remain higher than silicon (Si) devices, though the cost ratio may change in the future. Therefore, it is necessary to not only consider possible savings regarding miniaturization and higher power density (kW/kg, kW/l) but to minimize expenditure for semiconductors as well. Multi-chip packaging and substrate technologies play a major role in this equation.
Power density depends on switching frequency
Passive components such as capacitors, inductors, and transformers represent a significant share of the power converter unit´s (PCU) total weight, volume, and cost. Their size can be reduced when power semiconductor devices operate at higher switching frequencies. This is possible with SiC MOSFETs because they do not generate tail current and a very low level of switching energy can be achieved. Consequently, switching losses mainly depend on switching time.
Fast switching speed has multiple limitations in the system as it may:
affect the driver circuit, due to parasitic capacitive coupling;
generate overvoltage at turn-off because of parasitic inductance in the commutation path;
lead to accidental turn-on because of parasitic drift of the gate voltage;
reduce the lifetime of isolation materials in components, such as motors and transformers;
negatively impact the electromagnetic compatibility of the system.
While higher switching speed is possible with SiC devices, the chip layout, the chip assembly, the interconnection technologies, and the ceramic substrate with its copper pattern all have a potential impact on parasitic inductance and coupling capacitances in the system. Therefore, the optimization of the chip packaging is important in order to take full advantage of the characteristics of these devices.
Power density depends on heat dissipation
The cooling circuit accounts for another large share of the system´s total weight, volume, and cost. A size reduction can be achieved through an increase of the thermal resistance required to remove losses from the chip to the coolant.
The first approach is to increase the chip junction temperature. Silicon power devices are typically rated at 150°C up to 175°C and cannot tolerate a higher chip junction temperature because of the critical reverse leakage current. In contrast, wide-bandgap devices such as SiC MOSFETs can work at a higher chip junction temperature. The best device utilization is achieved at a chip junction temperature up to 250°C to avoid a thermal runaway as the current increases. Operation at a higher temperature is possible, but the current density should then be reduced. This lower chip utilization only makes sense in applications with an extremely high ambient temperature. In addition, operation at such a high chip junction temperature requires materials for die-attach, interconnections, and encapsulations with a suitable temperature resistance and a better match between their respective coefficient of thermal expansion (CTE) to reduce thermo-mechanical stress. Active metal brazed (AMB) silicon nitride (Si3N4) substrates have outstanding thermal and mechanical properties for use in such cases.
Reduction of losses is another and even more promising approach. The high breakdown field of SiC material enables MOSFET structures with a thin drift layer to result in lower chip resistance. Consequently, conduction losses can be reduced. Even a slight reduction of the losses leads to a significant increase in thermal resistance. This is particularly true for systems with an existing high-efficiency level and high-power rating. Ultimately, significant savings are possible for heat sinks and power consumption to drive fans and pumps for forced air cooling and liquid cooling, respectively.
Chip area must be optimized
Considering the cost distribution between different components in the system may vary depending on the application, the achieved savings in cooling and passive components may not be sufficient to compensate for the higher chip costs, due to the specific cost ($/cm²) of SiC devices. Therefore, the chip area must be optimized to achieve a decrease in specific system costs ($/kW). This can be either a system size reduction at the same power rating or a power rating increase at the same system size. Since the lower specific chip resistance and lower switching energy of SiC devices are given, operation at a high loss density and fast switching speed is the most effective approach to reduce the chip area. This requires better heat dissipation. Again, active metal brazed (AMB) silicon nitride (Si3N4) substrates with high thermal conductivity and thick copper metallization is the technology of choice to support the broad adoption of SiC devices in multiple applications.
- |
- +1 赞 0
- 收藏
- 评论 0
本文由董慧转载自Rogers,原文标题为:How to Reduce Specific System Costs with Silicon Carbide Devices,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
相关推荐
【经验】如何选择合适介电常数的Rogers高频板材?
在选择板材rogers高频板材时,最关注的指标是介电常数。但也有一部分工程师对介电常数理解的比较片面,在选择rogers高频板材时,会遇到一些问题,通过本文讲解,可以更好的帮助工程师快速准确的选择合适介电常数的板材。介电常数和频率相关,同一种板材的不同厚度有时会有一定差异。rogers板材的范围1.96(RT/duriod 5880LZ)-13(TMM13i)。
Rogers高频板RO4350B板材在24GHz时介电常数和损耗因子
Rogers高频板RO4350B达到了成本和高频性能的最优化,是最具性价比的低损耗高频板材。为了更好的实现设计要求,笔者在设计微带阵列天线时研究了基于Rogers高频板RO4350B板材的微带传输线在24GHz的插入损耗。
ROGERS层压板/高频板选型表
罗杰斯/ROGERS提供以下技术参数的层压板/高频板选型,超低损耗,低至0.0004(Df) ;超大尺寸:54inchX24inch、52inchX40inch、50.1inchX110inch 等;丰富介电常数:2 -12.85 (Dk);超薄介质,低至1mil
产品型号
|
品类
|
产品系列
|
介电常数(Dk)
|
正切角损耗(Df)
|
介质厚度(mm)(mil)
|
导热系数W/(m·K)
|
铜箔类型
|
铜箔1厚度
|
铜箔2厚度
|
尺寸(inch)
|
5880LZNS 24X18 H1/H1 R4 0100+-001/DI
|
层压板
|
RT/duroid® 5880LZ
|
2
|
0.0027
|
0.254mm(10mil)
|
0.33
|
电解铜
|
H1
|
H1
|
24X18
|
选型表 - ROGERS 立即选型
ROGERS 半固化片选型表
罗杰斯/ROGERS提供以下技术参数的半固化片选型,超低损耗,介电常数(Dk):2.28-10.02,正切角损耗(Df):0.002-11.2,超大尺寸:24inchX36inch 、25.5inchX18inch、48inchX36inch等,超薄介质。
产品型号
|
品类
|
产品系列
|
介电常数(Dk)
|
正切角损耗(Df)
|
厚度(mils)(mm)(μm)
|
尺寸(inch)
|
导热系数W/(m·K)
|
3003 BOND PLY 25.5X18 005 R3
|
半固化片
|
RO3003
|
3.00±0.04
|
3
|
0.005” (0.13mm)
|
25.5X18
|
0.5
|
选型表 - ROGERS 立即选型
Rogers苏州工厂生产的产品的临时交货期延长
描述- Rogers公司宣布,由于近期需求激增,其苏州工厂生产的多个产品将临时延长交货期。预计这种影响将是短期性的,并计划从2024年5月初开始逐步减少交货期。具体产品及其新的交货期已附在邮件中。公司正在评估现有订单的恢复日期,并请求客户提供预测信息以协助决策。
型号- RO4830™,RO4535™,KAPPA® 438,DICLAD880™,RO4533™,RO4000™,DICLAD®,RO3003G2™,RO3035™,RO3003™,RO4003C™,RO4835™,RO3003G2™ PM,TC350™,RO4534™,RO4730G3™ R2,RO4835T™,RO4233™,RO4350B™,RO3006™,AD255™,AD300™,RO3010™,RO3000™,TC350™ PLUS
Rogers苏州工厂碳足迹减排项目的计划停工时间
描述- Rogers苏州工厂计划于2024年3月11日至3月16日进行升级改造,期间将暂停生产,影响交货期。此次停工旨在实施碳减排项目,符合公司全球ESG目标。改造完成后,预计交货期将恢复至项目前水平。公司正努力提前完成订单,并请求客户提前下单。
Rogers Corporation主动承担降低RO3000®产品线供应链的风险
描述- Rogers Corporation为提高RO3000®产品线的供应链韧性,与多个PTFE树脂供应商合作,确保材料供应的持续可靠性。由于供应商退出,部分产品将更换PTFE供应商。从2023年9月开始,RO3000®层压板客户将逐步过渡到RO3010™,预计2024年第一季度末完成。Rogers已对新产品进行测试,并与现有产品进行对比,分析表明两者性能无显著差异。
型号- RO3006™,RO3003G2™,RO3210™,RO3206™,RO3035™,RO3003™,RO3000®,RO3203™,RO3010™
ROGERS 粘结片选型表
ROGERS提供粘结片选型:介电常数(Dk):2.94-2.97,正切角损耗(Df):0.03-0.0012,厚度(mm):0.038-0.102,导热系数W/(m·K):0.4-0.5。
产品型号
|
品类
|
产品系列
|
介电常数(Dk)
|
正切角损耗(Df)
|
厚度(mm)
|
尺寸(mm)
|
绝缘强度(V/mil)
|
热变化率(ppm/℃)
|
导热系数W/(m·K)
|
吸湿率
|
2929 BOND PLY 12X18 0015+-10%
|
粘结片
|
2929
|
2.94±0.05
|
0.003
|
0.0015” (0.038mm) +/- 10%
|
12”X18” (305mm X457mm)
|
2500
|
-6
|
0.4
|
0.10%
|
选型表 - ROGERS 立即选型
ROGERS 粘结膜选型表
ROGERS 粘结膜选型:介电常数(Dk):2.32-2.35,正切角损耗(Df):0.0013-0.0025,Lengths(ft):30ft-150ft,熔化温度(℃):397°F (203°C),多种尺寸:12X18/24X18/24X30等。
产品型号
|
品类
|
产品系列
|
介电常数(Dk)
|
正切角损耗(Df)
|
Lengths(ft)
|
熔化温度(℃)
|
尺寸(inch)
|
厚度(mm)
|
6700 2.35 24X30LFX0.003
|
粘结膜
|
CuClad 6700
|
2.35
|
0.0025
|
30ft
|
397°F (203°C)
|
24X30
|
0.0030" (0.08mm)
|
选型表 - ROGERS 立即选型
Rogers RT6010LM, DK是否有=11.2的材料
ROGERS的RT6010系列高频板材曾经有三个型号,6010.2LM、6010.5LM以及6010.8LM但是后两者陆续停产,现在推荐使用6010.2LM,该型号没有DK为11,2的,具体资料见:Rogers(罗杰斯) RT/duroid 6006/6010LM 高性能板材数据手册
ROGERS微波板材5880 18X12 5R/5R R3 0310+-001/DI的5R是什么意思?
根据rogers铜箔名称查询,ROGERS微波板材5880 18X12 5R/5R R3 0310+-001/DI的5R表示0.5OZ的压延铜箔。
Rogers RO4350B板材的Dk是用什麼测试方法?求详细介紹
Rogers的4350板材的DK测试 可以参照IPC-TM-650 2.5.5.5和 IPC-TM-650 2.5.5.6
Rogers Announces Termination of Merger Agreement with DuPont
Rogers announced the termination of its definitive merger agreement with DuPont de Nemours, Inc. (“DuPont”). In connection with the termination of the merger agreement, Rogers has received a regulatory termination fee of $162.5 million from DuPont.
电子商城
品牌:ROGERS
品类:Circuit Materials
价格:¥2,479.9453
现货: 1,289
品牌:ROGERS
品类:High Frequency Circuit Materials
价格:¥550.8681
现货: 1,135
品牌:ROGERS
品类:Antenna Grade Laminates
价格:¥2,989.4355
现货: 429
品牌:ROGERS
品类:Liquid Crystalline Polymer Circuit Material
价格:¥1,485.0299
现货: 253
品牌:ROGERS
品类:Antenna Grade Laminates
价格:¥2,571.9097
现货: 250
品牌:ROGERS
品类:High Frequency Circuit Materials
价格:¥2,669.6313
现货: 250
品牌:ROGERS
品类:High Frequency Circuit Materials
价格:¥554.2134
现货: 244
品牌:ROGERS
品类:PTFE/Woven Fiberglass Laminates
价格:¥16,030.1502
现货: 201
品牌:ROGERS
品类:High Frequency Circuit Materials
价格:¥4,679.1859
现货: 180
服务
使用FloTHERM和Smart CFD软件,提供前期热仿真模拟、结构设计调整建议、中期样品测试和后期生产供应的一站式服务,热仿真技术团队专业指导。
实验室地址: 深圳 提交需求>
可加工PCB层数:1-30层;板材类型:FR4板/铝基板/铜基板/刚扰结合板/FPC板/高精密板/Rogers高频板;成品尺寸:5*5mm~53*84cm;板厚:0.1~5.0mm。
最小起订量: 1 提交需求>
登录 | 立即注册
提交评论