【经验】从插入损耗角度讨论材料选型及电路设计

2021-09-08 ROGERS
PCB,ROGERS PCB,ROGERS PCB,ROGERS PCB,ROGERS

无线通信从4G LTE到LTE-Advance的快速发展,以及无线标准的不断演进,使下一代移动通信5G被提上议事日程并被讨论的越来越热烈。随着物联网的兴起和移动互联网内容的日渐丰富,“万物互连”的5G及物联网时代到即将来到。插入损耗是无线通信及射频电路设计中的一个重要指标,几乎所有的射频工程师在设计之初都会对电路或系统的插入损耗进行预估,而后开始设计和选型。电路插入损耗影响着电路的性能,在无线通信的关键部件如功率放大器中,降低插入损耗有利于提高功放效率,以及更好的热量管理;在天线应用中,较低的电路插入损耗能够降低天线馈线的能量损耗,另一方面可提高辐射单元的效率和天线的信号覆盖范围。本文将从多个方面讨论电路的插入损耗,帮助射频工程师理解电路总的插入损耗的来源,更好的进行电路材料的选型和电路设计。


插入损耗

在射频和微波电路中,以最常用的传输线为例,插入损耗(Insertion Loss)通常定义为输出端口所接收到的功率Pl与输入端口的源功率Pi之比,常用dB表示。插入损耗通常是由于电路的失配引起,但电路设计使要达到理想状态下的匹配几乎是不可能的。通常,当回波损耗(Return Loss)小于-15dB时可认为电路具有良好的匹配。

在实际的电路中有许多方面的因素造成电路产生损耗,如电路设计及匹配,使用电路材料的损耗和加工等。对于微带传输线电路,插入损耗主要包括介质损耗、导体损耗、辐射损耗和泄露损耗几个部分,是各种损耗成分的总和。辐射损耗通常发生在严重失配、或特定的电路设计如天线,或微带线宽度与所传输的高频信号频率的波长相比拟时,对通用微带线来说辐射损耗几乎很小。泄露损耗通常由于高频PCB材料具有较大的体电阻而较小,一般可以忽略。因此,导体损耗和介质损耗是传输线上信号衰减的主要方面。导体损耗是包括传输线上信号路径和返回路径上的能量损失,是由导体自身的阻抗引起。介质损耗则是由于构成电路的电路材料的耗散因子所决定,选择相对较小的损耗因子的电路材料有利于电路总的插入损耗的减小。


趋肤效应

电路的导体损耗会随着频率的升高而增加。在低频时,导体上的电流几乎均匀分布在导体内部;但在高频时,导体中出现交流或者交变电磁场。此时导体内部的电流分布发生变化,电流主要集中在导体外表的薄层。越靠近导体表面,电流密度越大,而导体内部的电流很小或甚至没有电流,如图2。结果导致导体的电阻增加,导体损耗也随之增加。这一现象称为趋肤效应(skin effect)。

趋肤效应导致电流分布于导体表面的厚度称为趋肤深度δ(Skin depth),计算公式如图2中所示,式中σ是导体的电导率,μ是磁导率,ffreq是所承载信号的频率。表1是铜导体在不同频率下的趋肤深度。


铜箔类型及粗糙度

通常在PCB基材加工过程中,为使铜箔牢固的粘结到不同的介质材料上,铜箔表面会进行糙化处理以改善其和PCB介电材料的结合力。大多数的PCB基材都会压合几种形式的铜箔导体,包括标准电解铜(ElectroDepositedcopper)、反转铜(Reverse Treated copper)以及压延铜(Rolled copper)。如图3所示,简单的讲,标准ED铜是将硫酸铜溶液里的铜离子电解到慢慢滚动的抛光不锈钢的滚筒上形成的。与抛光不锈钢滚筒直接接触面的铜的表面粗糙度较为平滑,但是和溶液直接接触面铜却粗糙的多。压延铜箔是通过辊轧机碾压铜块而得,连续的辊轴碾压可以得到厚度一致性很好且表面光滑的铜箔。RT铜箔也属于电解铜,只是将铜箔表面较平滑的面与基材压合形成。


不同的铜箔具有不一样的表面粗糙度,对铜箔表面粗糙度的表征有多种测量方法和衡量单位。对于射频微波应用,Rq或者RMS(均方根)值是一种较为合理的粗糙度表征方式。不同铜箔表面表现出完全不同的颗粒与粗糙度特征,图4a和4b显示了两种典型铜箔标准ED铜与压延铜的与介质结合面的表面特征;4c列出来几种常用铜箔的表面粗糙度典型值。可以看到,标准电解铜箔的表面粗糙度较高,典型RMS值是2.2um;而压延铜的铜箔表面粗糙度很小,典型RMS值仅0.3um。

不同铜箔表面粗糙度会产生不同的寄生电感,导致铜箔表面阻抗的变化,从而产生不同的导体损耗。一般来说,当电路工作频率对应的趋肤深度小于或等于铜箔的表面粗糙度时,表面粗糙度的影响将变得非常显著。如图5,在5milROGERS RO3003™的相同电路材料上设计微带线测试其插入损耗。在频率<1GHz时,趋肤深度2.09um,大于标准电解铜粗糙度1.6um和压延铜0.3um,两种铜箔的电路的插入损耗差并不明显;而当频率逐渐升高时,此时标准电解铜与压延铜的插入损耗表现出显著的差异。因此,选择低粗糙度的铜箔有利于降低插入损耗,特别是在微波毫米波频段趋势更加明显。

介质厚度电路材料的介质厚度也对电路的导体损耗产生影响。图中数据曲线是通过罗杰斯公司基于Hammerstad 和Jenson模型开发的MWI应用软件仿真得到。该软件可以准确计算微带传输线的阻抗和插入损耗值,其仿真结果与实测值十分吻合。

从图5中可以明显的看到,基于6.6mil, 10mil, 30mil不同厚度的Rogers的RO4835™热固性材料上的50Ω微带线,导体损耗在6.6mil时最大,30mil最小;从而导致相同频率的电路总的插入损耗值也随着介质厚度增加而减小。


这种由于厚度不同引起的导体损耗变化的原因一方面是由于不同厚度下的相同50Ω微带线的线宽不同导致。另一方面铜箔粗糙度在不同厚度的相同材料上对导体损耗的影响也存在差异。


为进一步验证铜箔粗糙度对插入损耗在不同厚度上的影响,选取Rogers RO3003™电路材料设计50Ω微带线进行研究测试。如图6所示,选取5mil和20mil的RO3003™材料的标准ED铜和压延铜上分别制作成相同电路。可以看到在25GHz时,基于5mil厚度的标准ED铜和压延铜电路插入损耗之间的差为0.35dB/inch;而基于20mil厚度的标准ED铜和压延铜电路插入损耗之间的差异仅为0.1dB/inch。由于在相同材料厚度上的50Ω微带线具有相同的导体宽度,由线宽引入的导体损耗是相同的。所以在相同材料上,铜箔粗糙度在薄的介质材料上的插损影响比在厚的材料上更大,在这个例子中增加了0.25dB/inch。


因此,选取更厚的电路材料可以降低相同铜箔粗糙度条件下对于插入损耗的影响。但越厚材料会有越宽的线宽,对于微波及毫米波的电路应用,较宽的线宽容易产生不必要的杂散信号,影响信号的传输。因此需要对材料厚度及铜箔粗糙度进行权衡。


表面处理工艺

最终的电路都需要经过电路加工形成。电路的插入损耗也受电路加工中其他附加材料的影响,如电路的不同表面处理工艺。电路的表面处理对PCB电路加工是非常必要的。它不仅能够为元件焊接提供光滑可焊的表面,同时也为PCB的铜导体提供了保护。然而,大部分PCB表面处理材料的导电性都比铜箔的导电性差。导电性越差产生的导体损耗越高,从而电路的插入损耗也越大,特别是对宽带、高频电路更加明显。


在PCB的表面处理工艺中,常用的几种表面处理工艺包括阻焊油墨(Solder  mask)、有机保焊膜(OSP)、化学沉锡、化学沉银、化学镍金(ENIG)等。阻焊油墨是一种高损耗的材料,其损耗因子为0.02;同时,阻焊油墨通常具有较高的吸水率,它也将导致电路插入损耗的上升。化学沉银是一个例外,银是一种良导体,但由于价格昂贵作为表面处理通常是非常薄的一层,基本不会引起损耗的增加。化学镍金中由于镍的导电性比铜差,且由于趋肤效应,在高频频段时电流将沿着导体的表面传输,导致电流将完全覆盖镍层和薄金层,如图7a。从而使得ENIG表面处理的电路会比使用裸铜的电路的插入损耗大很多。图7b给出了基于5mil  RT/duriod®6002材料1/2oz压延铜的不同表面处理工艺相同微带线电路的插入损耗实测数据比较。图7 表面处理工艺对插损的影响(a. 化学镍金剖面图,b. 多种不同表面工艺的插损比较)电路结构射频电路工程师往往需要选用某种PCB电路技术,如微带线、带状线或接地共面波导(GCPW)等来进行信号的传输。不同的电路传输技术对于最终的插入损耗也存在差异。微带线是最为简单的一种传输技术,但在高频毫米波频段时微带线由于辐射损耗而导致插损显著增加。带状线是用于微波毫米波频段的PCB传输线的一个极好选择,但电路加工过程稍显复杂。GCPW传输线技术的是中间导体、两侧接地面的电路结构,这种结构使其比微带线在毫米波频段有较小的辐射损耗,电路加工又比带状线简单。图8显示了基于20mil Rogers RO4835™材料的微带线与GCPW紧耦合电路均为裸铜时的插入损耗仿真结果。当频率较低时,微带线与GCPW辐射损耗都很小,而GCPW紧耦合电路由于导体线宽更窄导致更高的导体损耗,因此微带线相比GCPW有更低的插入损耗值;当频率较高时,微带线的辐射损耗显著增加,而GCPW的辐射损耗仍然很低,此时GCPW总的插入损耗就更低。

电路结构

射频电路工程师往往需要选用某种PCB电路技术,如微带线、带状线或接地共面波导(GCPW)等来进行信号的传输。不同的电路传输技术对于最终的插入损耗也存在差异。微带线是最为简单的一种传输技术,但在高频毫米波频段时微带线由于辐射损耗而导致插损显著增加。带状线是用于微波毫米波频段的PCB传输线的一个极好选择,但电路加工过程稍显复杂。GCPW传输线技术的是中间导体、两侧接地面的电路结构,这种结构使其比微带线在毫米波频段有较小的辐射损耗,电路加工又比带状线简单。


图8显示了基于20mil Rogers RO4835™材料的微带线与GCPW紧耦合电路均为裸铜时的插入损耗仿真结果。当频率较低时,微带线与GCPW辐射损耗都很小,而GCPW紧耦合电路由于导体线宽更窄导致更高的导体损耗,因此微带线相比GCPW有更低的插入损耗值;当频率较高时,微带线的辐射损耗显著增加,而GCPW的辐射损耗仍然很低,此时GCPW总的插入损耗就更低。

对于选定的电路材料,铜厚不同也会导致GCPW传输线的插入损耗存在差异,这是因为GCPW结构中电磁场分布的原因。在GCPW电路结构中,电场既从顶层中心导体指向底层地面,也会从中心导体侧壁指向顶层的接地面来形成回流路径。当选用的铜箔更厚时,指向侧壁的电场路径将经由更多空气到达两侧接地面。相比于介质,空气损耗很低,因此此时相同电路下厚铜GCPW电路的总的损耗相对薄铜更小。同样,GCPW的接地间距s的大小也影响电路的插入损耗值。尽管接地间距小时利用空气更多,但此时导体宽度会变窄,导致导体损耗增加,结果相同电路下的总的损耗会增加。图9显示了基于10mil RO4835™相同铜箔、不同铜厚和接地间距下的GCPW传输线的电路结构剖面图,并比较了它们的插入损耗情况。

当在GCPW电路导体表面应用表面处理工艺时,其插入损耗的变化与微带线有所不同。以ENIG表面处理为例,如上节所述,微带线的插入损耗会由于ENIG表面处理而增加。基于8mil  RO4003C标准ED铜材料上设计的50Ω微带线,其应用ENIG的电路在50GHz的插入损耗比裸铜是高约0.7dB;而基于同样电路材料设计的50ΩGCPW电路,其ENIG的电路在50GHz是插入损耗比裸铜高达1.1dB,如图8所示。应用ENIG的GCPW电路具有更高的插损不仅是由于如微带线一样,导体表面的镍层导致导体损耗的增加;同时电场回流路径由中心导体至顶层接地面时会再经由接地面表面的镍层,进一步导致了插损的增加。


结论

因此,电路的插入损耗受到多方面因素的影响。选择更低介质损耗和低铜箔表面粗糙度的电路材料有利于降低电路总的插入损耗。选择较厚的电路材料有利于减小相同铜箔表面粗糙度条件下对插入损耗带来的影响;但如果电路应用于毫米波频段时,就需要权衡介质厚度导致线宽更宽引起的杂散和辐射损耗的影响。同时,在电路设计和加工时,不同的电路结构以及使用不同的电路表面处理方式都将对电路总的插入损耗产生影响。全面考虑电路总的插入损耗的影响因素,选择合适电路材料、设计和加工可将电路的插入损耗降至最小,实现最优的电路设计。

授权代理商:世强先进(深圳)科技股份有限公司
技术资料,数据手册,3D模型库,原理图,PCB封装文件,选型指南来源平台:世强硬创平台www.sekorm.com
现货商城,价格查询,交期查询,订货,现货采购,在线购买,样品申请渠道:世强硬创平台电子商城www.sekorm.com/supply/
概念,方案,设计,选型,BOM优化,FAE技术支持,样品,加工定制,测试,量产供应服务提供:世强硬创平台www.sekorm.com
集成电路,电子元件,电子材料,电气自动化,电机,仪器全品类供应:世强硬创平台www.sekorm.com
  • +1 赞 0
  • 收藏
  • 评论 0

本文由奶爸工程师转载自ROGERS,原文标题为:从 插入损耗角度讨论材料选型及电路设计,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

评论

   |   

提交评论

全部评论(0

暂无评论

相关推荐

【经验】微波PCB电路结构对比:微带线与接地共面波导谁更胜一筹

在高频电路设计中,需要同时考虑电路的性能变化与物理尺寸。传输线的结构是影响电路性能的关键因素之一,目前主流的传输线结构有微带线和接地共面波导两种。微带线是微波电路中最常用的传输线技术,而且对PCB工艺不敏感,但在毫米波频段时,微带的损耗将增加,适用于30GHz以下频段;接地共面波导则具有牢固的接地结构,在高频频段具备更低的损耗,可应用与更高频段,但设计和PCB工艺难度大。

2019-03-23 -  设计经验 代理服务 技术支持 批量订货

罗杰斯高频层压板RO3003G2,77G汽车雷达PCB材料的选择

毫米波雷达技术正逐渐扩展到民用领域,如汽车驾驶辅助系统的雷达传感器。其中77G毫米波雷达是汽车前向的主流方向,主要应用于前向防碰撞、自动巡航。77G毫米波雷达频率已经达到E波段,对PCB材料损耗因子和介电常数稳定性等特性都有极为严苛的要求。罗杰斯公司在RO3000系列PTFE材料基础上开发了RO3003G2高频层压板,适用于77G汽车毫米波雷达传感器设计。

2023-12-30 -  设计经验

如何使用PCB材料的设计Dk(介电常数)

介电常数Dk是印刷电路板材最重要的参数之一,电路设计者依靠它来确定微带电路的阻抗和物理尺寸。

2016-02-02 -  设计经验 代理服务 技术支持 批量订货

浅析射频PCB电路板设计中的特殊要求

本文中捷多邦来为大家浅析射频PCB电路板设计中的特殊要求,希望对各位工程师朋友有所帮助。

2024-12-01 -  技术探讨

解析PCB射频微带阵列天线设计要点

在大于10GHz的频段,PCB微带印刷天线相对于波导缝隙天线、透镜天线、反射面天线等其他天线具有明显优势。成熟的PCB高频线路板加工工艺可以有效控制微带天线制作成本,天线板、微波板、射频板以及低频数模电路板的多层混压技术还使得整个射频系统具有很高的集成度。本文中华邦鑫将为大家介绍PCB射频微带阵列天线的设计要点。

2023-12-28 -  设计经验

尚吉鸿与世强硬创共同提供1-20层各类高频微波电路板加工服务

产品采用高精度阻抗、多层盲埋、多层混压、高TG等多种PCB电路板工艺。

2024-11-27 -  签约新闻

浅析常用的PCB板载天线——铜质天线

PCB板载天线的天线是用什么材质,你知道吗?本文中捷多邦来为大家介绍常用的PCB板载天线——铜质天线,希望对各位工程师朋友有所帮助。

2024-08-18 -  技术探讨

【产品】适合于5G微波/毫米波功率放大器的高频电路PCB材料

为了提供5G放大器所需特性的电路材料,本文推荐Rogers(罗杰斯)公司两种不同厚度和特性的材料作为不同频率范围应用示例。对于6GHz及以下频率的5G功率放大器,厚度为20mil和30mil的陶瓷填充的电路材料,RO4385™是较好的选择。另对于毫米波频率下的5G功率放大器,厚度为5mil和10mil的RO3003™层压板就是非常合适的选择。

2018-08-16 -  新产品 代理服务 技术支持 批量订货

金航标PCB天线KH-FPC4G-1.13IPEX-100:无线通信的巅峰之作,线长100mm,采用IPEX端子接口

Kinghelm金航标推出KH-FPC4G-1.13IPEX-100 PCB天线,为4G通讯设备提供了强大的信号支持。天线尺寸为89×18.8mm,线长100mm,采用IPEX端子接口,易于与设备连接,为设备提供稳定、高效的信号传输。

2024-08-12 -  产品 代理服务 技术支持 批量订货

pcb微带线设计的9个步骤

微带线是一种常用的传输线结构,广泛应用于高频电路和射频设计中。本文是捷多邦整理的设计微带线的一般步骤,希望对您有帮助。

2023-12-22 -  设计经验

【技术】PCB层压板的Dk究竟如何确定?

众所周知Dk(介电常数)是最重要的电路材料参数之一,而电路层压板材料的Dk值可通过不同的测试方法确定,一般情况下都是是采用VNA(矢量网络分析仪)来获得测试参考电路的幅度和相位特性计算出Dk。

2016-07-04 -  原厂动态 代理服务 技术支持 批量订货

用于无线通信的PCB天线KH-(2400)-K504-JB,带宽100MHz,具有3dBi增益

金航标KH-(2400)-K504-JB是一款用于无线通信的优质PCB天线。以其卓越的性能和始终如一的品质,成为很多人的首选产品。产品频率范围为2400-2500MHz,带宽为100MHz,完全符合蓝牙连接标准;小于或等于2.0的驻波比可有效减少信号反射,从而实现高效的信号传输。

2024-07-15 -  产品 代理服务 技术支持 批量订货

【应用】显著提升汽车雷达系统稳定性的低损耗PCB板材RO3000

汽车雷达系统不易受天气影响。目前主要有24G和77G两种系统,分别实现近距离和远距离探测。汽车雷达系统信号流性能是否稳定,PCB板材是个非常重要的因素。

2019-07-30 -  新应用 代理服务 技术支持 批量订货

【应用】为77GHz汽车雷达寻找合适的线路板材料——PCB电路损耗及组成部分

与频率较低的射频电路、微波电路不同,毫米波频率对线路板材料有极为苛刻的要求。罗杰斯公司的RO3003™ 电路板拥有毫米波频段应用所需的所有特性,在未来自动驾驶汽车的电子系统中发挥重要的作用,使得公路驾驶将变得更加安全。

2018-11-10 -  应用方案 代理服务 技术支持 批量订货

微波/射频PCB高频板设计常见5种问题解决方案

凭借微波和射频PCB高频板设计捕获更高频率的能力,其重要性不言而喻。微波和射频电路如今已成为各种产品的一部分,其中最引人注目的是通信设备。用于微波和射频高频线路板制造大量完成以用于不同的设备。然而,更高的频率也带来了许多高频线路板设计挑战。以下是一些可以缓解其中一些问题的便捷解决方案:

2024-05-24 -  设计经验
展开更多

电子商城

查看更多

品牌:WAGO

品类:PCB接线端子

价格:¥12.2944

现货: 108,395

品牌:WAGO

品类:PCB接线端子

价格:¥5.6478

现货: 57,641

品牌:WAGO

品类:PCB接线端子

价格:¥14.6573

现货: 41,206

品牌:WAGO

品类:PCB接线端子

价格:¥6.0032

现货: 39,274

品牌:德普福

品类:板端连接器

价格:¥76.5000

现货: 30,000

品牌:德普福

品类:板端连接器

价格:¥144.5000

现货: 30,000

品牌:德普福

品类:板端连接器

价格:¥42.5000

现货: 30,000

品牌:WAGO

品类:PCB接线端子

价格:¥4.6297

现货: 20,160

品牌:WAGO

品类:PCB接线端子

价格:¥5.2156

现货: 20,107

品牌:WAGO

品类:PCB接线端子

价格:¥15.7042

现货: 16,000

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

现货市场

查看更多

品牌:TE connectivity

品类:连接器

价格:¥10.0000

现货:32,000

品牌:WAGO

品类:PCB接线端子

价格:¥0.6120

现货:14,584

品牌:贺鸿电子

品类:PCB板

价格:¥1.3564

现货:11,936

品牌:LITTELFUSE

品类:High Voltage Fuses

价格:¥36.3803

现货:8,610

品牌:TE connectivity

品类:功率继电器

价格:¥12.2040

现货:4,394

品牌:PHOENIXCONTACT

品类:插拔式连接器

价格:¥0.6100

现货:4,000

品牌:PHOENIXCONTACT

品类:PCB端子

价格:¥34.2899

现货:2,205

品牌:凯峰电子

品类:PCB固定式接线端子

价格:¥0.5650

现货:925

品牌:凯峰电子

品类:PCB固定式接线端子

价格:¥0.3673

现货:800

品牌:凯峰电子

品类:PCB固定式接线端子

价格:¥0.4238

现货:800

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

服务

查看更多

PCB快板打样定制

可加工PCB层数:1-30层;板材类型:FR4板/铝基板/铜基板/刚扰结合板/FPC板/高精密板/Rogers高频板;成品尺寸:5*5mm~53*84cm;板厚:0.1~5.0mm。

最小起订量: 1 提交需求>

高频微波射频PCB打样定制

可定制PCB最高层数:32层;板材类型:罗杰斯高频板/泰康尼高频板/ZYF中英天线板/F4B高频板/高频电路板/高频混压板/高频纯压板等;最大加工尺寸:609*889mm。

最小起订量: 1 提交需求>

查看更多

授权代理品牌:接插件及结构件

查看更多

授权代理品牌:部件、组件及配件

查看更多

授权代理品牌:电源及模块

查看更多

授权代理品牌:电子材料

查看更多

授权代理品牌:仪器仪表及测试配组件

查看更多

授权代理品牌:电工工具及材料

查看更多

授权代理品牌:机械电子元件

查看更多

授权代理品牌:加工与定制

世强和原厂的技术专家将在一个工作日内解答,帮助您快速完成研发及采购。
我要提问

954668/400-830-1766(工作日 9:00-18:00)

service@sekorm.com

研发客服
商务客服
服务热线

联系我们

954668/400-830-1766(工作日 9:00-18:00)

service@sekorm.com

投诉与建议

E-mail:claim@sekorm.com

商务合作

E-mail:contact@sekorm.com

收藏
收藏当前页面