Thermal Management in Artificial Intelligence
As technology continues to evolve, more companies leverage Artificial Intelligence (AI) to improve existing offerings and generate new solutions to accelerate value creation for their customers.
Rising Artificial Intelligence
Big tech industry leaders invest heavily in artificial intelligence research and development to enhance search engines, voice assistants, cloud services, and more. These companies also develop innovative AI-based solutions, such as self-driving cars, personalized healthcare, and intelligent virtual assistants.
Increasing investment in AI is driving the development of new technologies and tools, which are more accessible and affordable to businesses of all sizes, fueling the adoption of AI across industries. As artificial intelligence integrates more with daily life, the increase in processing power and bandwidth increases the need for better and more efficient cooling solutions to ensure the highest performance and reliability for these advanced systems. AI thermal management poses a challenge in the amount of cooling required and the variety of application-specific challenges each industry faces.
Latest Applications of Artificial Intelligence
Several studies and reports predict significant growth in the adoption of AI across industries. According to Fortune Business Insights, the global AI market value is expected to reach almost USD 1.4 trillion by 2029, growing at a 20.1% Compound Annual Growth Rate (CAGR) from 2022 to 2029.
Increasing AI implementation opens new possibilities for innovation and growth across various industries, such as transportation, healthcare, education, entertainment, and many others. Here are some of the latest AI applications:
Growing Artificial Intelligence Applications
eMobility and ADAS Systems
eMobility systems and self-driving cars rely on AI to operate safely and efficiently. One of the primary uses of AI in eMobility systems is to manage energy resources, like batteries and charging infrastructure. eMobility systems use AI to optimize charging and discharge cycles to maximize electric vehicle (EV) battery efficiency and lifespan, extend their range, and reduce the cost of ownership.
Self-driving cars use AI in Advanced Driver Assist Systems (ADAS) to analyze data from sensors like cameras, lidar, and radar, and to identify and track objects like other vehicles, pedestrians, and obstacles. Self-driving cars also use AI to optimize driving paths, speed, and other parameters based on traffic conditions, road geometry, and user preferences. This enables vehicles to navigate through complex scenarios and make decisions based on real-time data.
Integration of AI in the automotive industry has improved the safety and sustainability of transportation systems. Continuous advancement in AI technology enables automotive manufacturers to develop advanced eMobility and self-driving cars that are more efficient, safe, and widely adopted.
Cloud Computing
The combination of Artificial Intelligence (AI) and cloud computing has been a major driving force behind digital transformation in recent years. Cloud computing helps organizations access computing resources and storage on demand, reducing the need for expensive hardware and infrastructure. By integrating AI into the cloud, organizations leverage the capabilities of AI like machine learning and natural language processing to enhance their business operations, automate processes, and improve decision-making. For example, companies use AI-powered chatbots to interact with customers in real-time, analyze data to gain insights into customer behavior and preferences and optimize supply chain management by predicting demand.
Cloud-based AI providers offer various services like machine learning, speech recognition, image recognition, and natural language processing, making it easier for organizations to integrate AI into their operations.
Artificial Intelligence in the cloud offers scalable and cost-effective solutions, enabling businesses to expand their AI capabilities without investing in additional hardware. This is especially beneficial for small and medium-scale enterprises that may not have the resources to invest in hardware infrastructure. The combination of AI and cloud computing has the potential to revolutionize how organizations operate, making them more efficient, effective, and innovative.
Medical
The use of AI in healthcare is transforming the medical industry globally. Healthcare applies AI to improve the accuracy and speed of medical imaging, diagnose diseases, create treatment plans, speed up the drug discovery process, monitor patients, and provide real-time feedback to doctors.
For instance, medical imaging uses AI algorithms to analyze medical images like X-rays, Computed Tomography (CT) scans, and Magnetic Resonance Imaging (MRI) scans to detect abnormalities or signs of disease that may be missed by human interpretation. This helps doctors to make accurate and timely diagnoses, leading to better patient outcomes.
Artificial Intelligence also enhances drug discovery process speed by analyzing large datasets and predicting the efficacy of new drug candidates. This helps identify potential treatments more quickly and efficiently, leading to new treatments for different medical conditions.
The use of AI in healthcare is revolutionizing healthcare delivery, improving patient outcomes, reducing healthcare costs, speeding up processes, and enabling more personalized care.
Thermal Management in Artificial Intelligence
As system architects continue to integrate artificial intelligence into various industries and applications, the demand for smaller, more powerful, and energy-efficient computing devices increases. Continued AI adoption means developing more efficient software, hardware, and thermal management solutions to support these demands.
In terms of hardware, specialized processors and other components are optimized for artificial intelligence workloads. For example, graphics processing units (GPUs) have been widely adopted in the AI community due to their ability to efficiently perform the matrix operations that are fundamental to many AI algorithms. Chip designers and manufacturers are also developing AI-focused hardware to accelerate deep learning workloads.
However, each new hardware development for AI comes with an increased thermal output cost and this thermal demand has quickly outpaced traditional thermal solutions. These chips demand high power to support the increased processing demand required for AI tasks. As a result, artificial intelligence hardware generates excessive waste heat that can degrade performance or trigger system failure, which is why AI system designers rely more on thermal management solutions to manage AI processor temperature.
As AI becomes more power-hungry and complex, it’s crucial to design cooling solutions that keep up with these demands while still being efficient and reliable. Liquid cooling is a promising solution that provides much higher cooling capacity than air cooling, especially for mobile AI systems that require small form factors and low power consumption.
Customizing Thermal Management for Specific Artificial Intelligence Applications
Another important consideration in artificial intelligence cooling and thermal management is the specific application of AI and its associated thermal requirements. For example, AI systems used in self-driving cars have different cooling requirements than those used in data centers or medical devices. It is therefore essential to design cooling solutions that are tailored to the specific AI application and its use environment.
Thermal Management for eMobility Artificial Intelligence
Thermal management solutions for artificial intelligence in eMobility applications focus mostly on cooling onboard electronics and processors, especially for Advanced Driver Assist Systems. Systems that collect, organize, process, and implement sensor data to increase vehicle occupant safety rely on fast, reliable processing to make rapid, safe decisions. Cooling solutions for eMobility require the utmost reliability in a lightweight, durable format to ensure passenger safety with minimal impact on vehicle range and efficiency.
Cooling Medical and Enterprise Deep Learning and Artificial Intelligence Applications
AI solutions in hyper-scale or data center environments for either consumer or medical applications are currently transitioning from air-cooled solutions into high-performance liquid cooling, with coolant distribution units (CDUs) as the core of these next-gen thermal management systems.
The BOYD Difference
Boyd has decades of experience and expertise designing and manufacturing at-scale custom thermal management solutions like coolant distribution units, liquid loops and cold plates, chillers, 3D vapor chambers, and remote heat pipe assemblies for various industries, including eMobility, cloud, medical, and more. Our engineering and material science expertise allows us to design a tailored solution for a specific application, whether it is a cooling solution for ADAS systems, data centers, or medical equipment.
We leverage our extensive supplier network to obtain the materials and components required to design innovative solutions optimized for performance, reliability, and energy efficiency.
- |
- +1 赞 0
- 收藏
- 评论 0
本文由洛希转载自BOYD Blogs,原文标题为:Thermal Management in Artificial Intelligence,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
相关推荐
3D Vapor Chambers: Revolutionary Heat Dissipation
As the field of AI continues to evolve, there is a growing need for more minor and more powerful semiconductor chips. However, upgrading semiconductor technology while keeping costs low has increased power consumption and heat generation in these chips. This has caused TDP rates to accelerate, making it increasingly challenging to manage heat in high-performance, compact electronics.To address this issue, a 3D Vapor Chamber has been developed, which can handle over 500 watts of power. This technology is ideal for servers, base stations, repeater stations, and data centers.
Advantages of Vacuum-brazed Cold Plates
Vacuum brazed cold plate has unparalleled flexibility in design, as it is not limited by the bending radius limitations of pressure tube cold plate. Heat pipes can also be embedded in the plate to improve heat dissipation.
Data Center Installations: In-Rack Cooling or In-Row Cooling?
New artificial intelligence (AI) applications push rapid data center growth, leaving data center architects to quickly determine if in-rack cooling or in-row cooling is right for their installation. Consumer demands for convenience, flexibility, speed, mobility, and responsiveness drive immense processing. With, extreme data loads and more powerful processors come additional heat generation, where system designers rely on innovative cooling solutions like in-rack cooling and in-row cooling to meet this data explosion.
TE Connectivity(泰科)传感器选型指南
目录- Company Profile DIGITAL COMPONENT SENSOR DEVELOPMENT TOOLS FLOW SENSORS FORCE SENSORS HUMIDITY SENSORS LIQUID LEVEL SENSORS PHOTO OPTIC SENSORS PIEZO FILM SENSORS POSITION SENSORS PRESSURE SENSORS RATE AND INERTIAL SENSORS SCANNERS AND SYSTEMS SPEED SENSORS TEMPERATURE SENSORS TORQUE SENSORS ULTRASONIC SENSORS VIBRATION SENSORS WATER LEVEL SENSORS
型号- 7504A,3255A,T500,8011-AR,8011-AP,CD9515,DSD 25,68CM1,FS-90,FS-91,6900,4602,4604,7505A,MS4525DO,DSD 17,TSYS02D,CWW600,D5100,4610,MS8607,EPRB,XP5,805,5903 SERIES,808,89BSD,T400,4630,SDT1,P1200,606M1,PS2011AB,LDTC FAMILY,DSD 40,ELM-4000,3058A,MS5803-01BA,FMT,SIL-3,M7100,700,LS809-31,EGCS-D5,TLH100,4332M3,FTP520,MS54XX,EGCS-D0,ESP 64HD,XL403D,AST46HA,832,FN7110,HSTA,834,EB,PS501,LDM-1000,U86B,DP86,KMXP 1000,52M30,PS2021AB,M905,RVIT-Z,603,LS509-51,ELM-5000,TS318-3B0814,FN4070,H005,PT500,H009,610,RCS01-10,31207B,FTP540,CWW850,PML 1000,LDS309-11N,EPB-PW,EVS722-51,CWW1000,FN9630,GC,FN9635,FLDT1,U7100,FTP530,85F,FN4080,834M1,HTU2X,ARD154,EPB,EGAXT,VS804-21,HC,65210E,EPL,7108A,86A,CLP,AST46SW,HR,MS52XX,KMXP 2000,AST4510,KPSI 730,KPSI 735,FTP560,633,634,7531A,XFTC300,Y12AD,18FR,FTP552,FTP553,FTP554,AST4401,AST4400,AST4520,KPSI 720,U5700,KPSI 600,FN4055,KPSI 601,400,MS5803-30BA,FTP551,31206B,FN9620,DPG,TRUBLUE 255,LL-01,FN7325,DPL,DPN,64B,40A,64C,40B,HTF3000LF,52F,3022,KPSI 750,KMT37,FN3050,TPT,64X,KMT39,9916,53A,AST43LP,ESP 16HD,AST4500,KPSI 500,KPSI 501,KPSI 745,3028,86BSD,8811-01,PM50,KMA36,TSYS01,LT,TSYS02,ATA-2001,KMT36H,P900,LBB,G-SERIES,PM81,FN3030,DSD,3038,DSF,CM-01,DSH,8021-AP,8021-AR,DSL,PM83,CD375,ML,DT1,4020,TSD,6200,DSS,AST46PT,AST44LP,805M1,AST4600,DSY,TSD305,7500A,DC-SE,EGAXT3,4030,LDTC,XPM10,MS4515DO,KPSI 710,PT100,MSP300,AST20HA,XS-C,XS-D,7501A,LL-10,HTU3535PVBM/WIRE,PT101,6100,SSI,HTG351XCH,AST2000H2,KPSI 700,SSR,KPSI 705,TRUBLUE 275,LS304-31,LMM-H04,LMM-H03,FN3148,TSYS,DSD 70,7502A,7514A,P700,APS,4810A,CD1110,KPSI 330,8021-VP,8021-VR,KPSI 335,AST4000,7135A,5905 SERIES,400 SERIES,XFL212R,6000,LVM-110,KMXP 5000,KPSI 320,AST44XX,8711-01,121,FN3002,AST5100,LCS-03,FN3000,CS1120,R36,PCA 375,U5300,RT9,RT8,M3200,7100A,9400,TLH600,CPA150,HS1101LF,M210,AST20SW,KPSI 351,KPSI 353,HTU383X/WIRE,130,IT9000,KPSI 355,AST5300,AST4100,SG,CD1140,XPM4,SK,7101A,SM,FX19,MSP100,SP,EPM-5000,TPT300V,PM101,MSP340,SR,12FR GP,PT9000,AST45XX,KPSI 342,1201F,MT3A,ACH-01,SL-630,M5600,7102A,PT1000,TS,EL20-S458,8011-VP,MS5805,XFU400,MS5803,MP 2000,P981,HSTAR,KPSI 30,HTM2500LF,CS1210,AST5400,E-SERIES,MLP,FN1010,HTU2XF,HM1520LF,TS305-10C50,24FR,TRUBLUE 585,16MS,52,8011-VR,KPSI 27,MS32,KPSI 28,58,MS1451,XPM6,160,AST46XX,ESP 32HD DTC,PT1,161,ACCUSTAR EA,AST4200,PT5,DSH 16,DOG2,FX29,MMX,12FR,ESP 64HD DTC,7104A,TRUBLUE 575,FN2114,US300,9FR,9146-R,GHSE,PTX,85BSD,7105A,MS5837,9216,KMA36A,AST20PT,AST4300,MS1471,9146-T,808M1,U5600,FN2570,CD1050,EPM-4001,XP,82,MS5525DSO,85,86,TRUBLUE 555,FS-01,89,MS5607,FS-02,FS-05,FS-06,ED32I,MS5840,PS2031AB,8032-01,FN2420,R60D,3052A,154BSD,P9000,MS5611,XFC200R,EPIH,ELAF,ESP 32HD,M12,3801A,1620,KMY,65210ES,KMZ,FN2317,M150,AST46DS,11206AC,10FR,PS831,8021-01,EGCS-D1S,KPSI 300DS,1630,820M1,XPC10,TSEV,53AF,140A,SL-900,MS5637,CD1124T,EVS312-11N,MT2,MT3,CS1060,CD1095,832M1,VCS-06,MTA,VCS-04,3700,M5200,FN7080,P105,P101,9022,FS19,7131A,FC22,FC23,4630M12,9034,142A,9038,154N,4801A,9032,LIM-420,9033,5905,GHSER,7132A,LTA,ACCUSTAR IP66,LTB,4630M14,5903,PT8000,P125,TS318-5C50,T600,8102A,LTR,HM1500LF,R30A,GHSER 750-A,HTU21D,8011-01,PS801,700 SERIES,KPSI 380,NDT-1,FS20,FS22,4835A,AST43XX,D-SERIES,FS23,U5200,1201,1200,HPGS 750,FCA7300,AD-101,PS811,VS309-51N,KMXP,11207AC
爰美达散热高达300W/CM2嵌入式热管与600W高功率0.4mm不锈钢超薄VC解决严苛的热管理需求
描述- 爱美达(AAVID)隶属于宝德(BOYD)集团,1964年创立于美国新罕布什尔州,至今己有50多年的历史,是全球散热产品及散热系统管理解决方案的领导者。公司提供行业中最广泛的产品线,从最小的板级散热到几千万瓦的工业用散热产品;服务的市场非常广泛,包括服务器、汽车、电信、LED、医疗设备、消费电子、军事和航空航天、测试设备、电力等各产业。
型号- LCS7846G1,LCS 951-50126,CHILLER 900-27969
提高冷却效率:冷却器和低温冷却
描述- 本文探讨了液体冷却系统中的当前趋势,重点介绍了冷却器(Chiller)的使用和应用。文章涵盖了冷却器标准、设计指南以及如何利用冷却器提高效率、改善性能和更好地控制高温负载应用中的严格温度。文章还讨论了液体冷却系统在电子化、智能技术和技术依赖不断增长的全球趋势中的重要性,以及冷却器在数据中心、医疗设备等高功率系统中的应用。此外,文章详细介绍了不同类型的冷却器,包括标准、低温度和级联冷却器,以及选择和设计冷却器时需要考虑的关键因素,如热负荷、冷却剂流体、制冷剂选择和成本效益。
Aavid(爱美达)--BOYD热管理(导热界面材料)选型指南
目录- Aavid Company profile Thermal Interface Materials Overview Thermo-silicone interface material Thermo-silicone caps and tube Thermally conductive soft-silicone film Thermally conductive silicone-free films Thermally conductive phase-change material Graphite films EMI-shielding materials Thermally conductive ceramics Insulating films Insulating bushings POWERCLIP Heat sinks Films/ceramics/Phase-change materials Standard configurations and dimensions Thermal properties products naming rules Thermal Properties Products Technical Information
型号- KU 3-380/M3,KU-BG 30,KU-TCS100,KU-A 30,KU-TXE 50,KU-CR-MINI,KU 3-325,KU 1-159,KU-K/CU/K,KU-EGF 45,KU-CG 80,KU-TXS 100,KU-CRFI 75,KU 3-334/3,KU 6-628/0,KU-ALN,KU-ALO,KU 7-724/AXX/CP,KU-BG 20,KU-ALC 5/315-157,KU 6-631/0,KU-ALF,KU 3-310,KU 6-651/PA,KU-ALC,KU-ALC 5/241-229,KU-TCSP400,S SERIES,KU-KAPIT,KU 6-655/SR,KU-ALC 5/370-134,KU-KAHN,KU-SAS20,KU-TCAS,KU 6-650/SR,KU-TCAT,KU-BGDX 80,KU-TCS200,KU-KAPIF,KU 1-019,KU 3-300,C SERIES,KU-TXE 100,KU 3-303,KU-ALC 5/250-125,KU 1-016,KU-LEXB0.25,KU-A 45,KU 4-440/3.1,KU 4-461,KU-ALC 5/374-244,KU-SAS,KU-TCS,KU-KE11,KU-SAS10,KU-CRF,KU -7-723/16/CXX/CP,KU-TCSP500,KU-TCAB,KU 4-453,KU-TCAD,KU 4-450,KU 4-451,KU-TDFBS,KU 3-396/24,KU-ALC 5,KU-NOMA,KU 6-652/PA,KU-TDFBH,KU 4-445,KU-TDFD,KU 4-443,KU-TDFF,KU 4-441,KU 6-656/SR,KU 4-440/4.0,KU-CRF-MINI,KU 6-624/K/CU/K,KU 2-ZUB01-567,KU-ALC 5/370-339,KU-ALC 5/315-114,KU-TCSP200,KU-ALC 5/750-370,KU-PA247/2,KU-A 80,KU-CR-125,KU-TCSP,KU 4-430,KU 6-651/SR,KU 7-723/CXX/CP,KU 7-724/SXX/CP,KU-LEXA0.25,KU-C 30,KU 6-623/0,KU-ALC 5/460-230,KU-PCL12,KU-ALC 5/354-154,KU-S 30,KU 7-723/16/SXX/CP,KU-ALC 5/386-252,KU-THE 300,KU-KG,KU-ALC 5/350-281,KU-ALC 5/366-197,KU-KC15,KU-CBGA,KU 4-498/X,KU 6-653/PA,KU-TCSP300,KU-CRFI,KU-S 45,KU 6-657/SR,KU-ALC 5/125-125,KU-TXST 100,KU 6-624/0,KU-ALC 5/425-244,KU-TCS500,KU-BGD,KU-BGDX,KU 3-396/24/4,KU-KG 25,KU-THE 200,KU 6-652/SR,KU 6-665/PA,KU-C 45,KU-ALC 5/456-236,KU-TCSP50,KU-KAMT,KU-ALC 5/550-370,KU-ALC 5/197-114,KU 4-499/X,KU 3-396,KU 3-397,KU 3-398,KU-THE 100,KU 3-399,KU-BGD 80,KU 7-723/16/AXX/CP,KU-TXST 200,KU-ALC 5/225-175,KU-THE 50,KU-ALF 5,KU 3-385,KU-TXST,KU 6-654/PA,KU 3-386,KU 3-387,KU-CRF-125,KU 3-388,KU 3-389,KU 6-658/SR,KU-TXS 50,KU 3-391,KU-CG 20,KU 3-392,KU 3-393,KU 3-394,KU 3-395,KU-ALC 5/106-108,KU-C 80,KU-ALC 5/425-134,KU-ALC 5/075-080,KU 7-723/AXX/CP,KU-ALC 5/630-302,KU-BG 80,KU-PCL,KU-TCSP100,KU-CG 30,KU 3-380,KU-ALC 5/206-206,KU 3-381,KU 3-382,KU 3-383,KU 3-384,KU-S 80,KU-TXST 300,KU 7-723/SXX/CP,KU 6-619,KU-TCS300,KU-KG 75,KU-MYA,KU 3-368,KU 3-369,KU 6-623/K/CU/K,KU 1-086,KU 7-700/AXX /CP,KU-TXE 200,KU-BGD 45,KU-ALC 5/112-112,KU-TXS 300,KU-TXST50,KU-CG 45,KU-CBMC,KU-ALC 5/100-100,KU 6-655/PA,KU-LEXC0.25,KU-EGF 20,KU-CBMA,KU-BGD 30,KU 6-620,KU 3-360,KU-BGDX 08,KU 6-624,KU-LEXA,KU 6-623,KU-LEXC,KU-LEXB,KU 6-628,KU-EGF,KU-BG,KU 1-086/1,KU-THS,A SERIES,KU-TCS400,KU-KG 50,KU-ALC 5/445-354,KU-EGF 30,KU-SFH,KU-SFI,KU-ALC 5/220-064,KU-TCS50,KU-SFG,KU-THE,KU-BGD 20,KU-TXE 300,KU-SFB,KU-TXS,KU 6-650/PA,KU 6-631,KU-ALC 5/346-154,KU 1-182,KU 6-630,KU 3-333/3,KU-TXS 200,KU 6-654/SR,KU-ALC 5/449-449,KU-BGDX 30,KU-TXE,KU 3-339,KU 6-630/0,KU-ALC 5/276-106,KU-ALC 5/480-150,KU 3-333,KU 3-334,KU-BG 45,KU-CG,KU - CG 20 - 0H -KS -20 X 25 MM - L,KU-KG 38,KU 1-072,KU-ALC 5/244-102,KU 4-495,KU 3-340,KU 2-ZUB 38-1,KU-ALC 5/402-358,KU-BGDX 20,KU-CR,KU 1-070,KU 7-724/CXX/CP,KU-ALC 5/364-081,KU-KG/S
Laird Thermal Systems(莱尔德热系统)液体冷却系统产品选型指南
目录- Introduction Benefits & Applications of Liquid Cooling Systems Nextreme™ Recirculating Chillers Liquid Heat Exchangers Custom Liquid Cooling Systems Featured Application: Medical Imaging
型号- 1510.00,WL1500,385901-001,VRC2400,VRC4500,NRC5000,WL3004,387008451,1550.00,LA5000,WL1000,385911-015,1520.00,387009925,OW4002,385910-043,387010178,387010179,NRC2400,1505.00,38701 0181,1264.00,1155.00,1104.00,VRC1200,WW5001,387002779,NRC400,WW3001,1515.00,WL500,WL2000,387005774,387005598,OL4503,385912-029,NRC1200,385910-015
The Nextreme Value Chiller Series from Laird Thermal Systems Offers Reliable, Cost-efficient Temperature Control for Electron Microscopes
Electron microscopes require precise temperature control for optimal image quality. Laird Thermal Systems‘ Nextreme Value Chiller Series offers a cost-effective, eco-friendly cooling solution with high reliability and low maintenance, meeting lab safety standards and reducing global warming potential. This advanced thermal management system ensures stable operation and improved performance of electron microscopes.
爱美达(AAVID)5G综合热管理解决方案——世强硬创沙龙2019
描述- Thermal Management Critical to Products that Keep the World Running
专为工业大功率设计,爱美达(Aavid)提供综合热管理解决方案——世强硬创沙龙2019
描述- Thermal Management Critical to Products that Keep the World Running
Laird Thermal Systems Offers Eco-Friendly Temperature Stabilization Solutions for OEMs’ Climate Action Goals
Laird Thermal Systems offers eco-friendly temperature stabilization solutions for various industries, moving away from high-GWP refrigerants like R134a and R404A. Their refrigerant-free thermoelectric coolers and chillers with natural refrigerants like R-290 provide sustainable alternatives, complying with environmental regulations and reducing GWP. Laird‘s Nextreme Series chillers and NRC400 thermoelectric chiller deliver efficient cooling without ozone depletion or global warming potential, supporting climate change initiatives.
Kodiak®系列循环冷水机组规格书
描述- Boyd公司的Kodiak®系列循环冷却器提供精确的温度控制(±0.1°C)和低于环境温度的液体冷却。这些冷却器采用压缩机制冷技术,具有600W至11,000W的额定制冷能力。Kodiak®系列包括空气冷却和水冷却版本,并提供多种泵选项,流量从1 GPM到12 GPM不等。该系列产品具备多种功能和安全选项,适用于3D打印机、激光设备、实验室和医疗设备、半导体加工以及一般工业等多种液体冷却应用。
型号- RC045,RC115,RC095,RC009,RC011,RC022
电子商城
服务
可定制变压器电压最高4.5KV,高频30MHz;支持平面变压器、平板变压器、OBC变压器、DCDC变压器、PLC信号变压器、3D电源、电流变压器、反激变压器、直流直流变压器、车载充电器变压器、门极驱动变压器等产品定制。
最小起订量: 100000 提交需求>
可根据需求定制抛光速率,镜面不锈钢光洁度有11~14级可选,具有去除率高、抛光后粗糙度低于10nm、光泽度高、易于清洗等特点,可在粗抛、中抛后的精抛工序、车削后使用。
最小起订量: 25kg 提交需求>
登录 | 立即注册
提交评论