How to Design a 2 kW 48 V/12 V Bi-Directional Power Module with packaged eGaN® FETs

2022-08-27 EPC

By 2025, one of every 10 vehicles sold worldwide is projected to be a 48V mild hybrid. 48V systems boost fuel efficiency, deliver four times the power without increasing engine size, and reduce carbon-dioxide emissions without increasing system costs. These systems will require a 48V/12V bidirectional converter, with power ranging from 1.5kW to 6kW. The design priorities for these systems are size, cost, and high reliability. 


This application note discusses the design of an EPC9165, 2kW, two-phase 48V/12V bi-directional converter using GaN FETs in QFN packages, achieving 96% efficiency. The heatsinking capability can be considered infinite since this will ultimately function inside a vehicle with the unit mounted to the chassis.


Design of the Bi-directional DC-DC converter 

A simplified schematic of the EPC9165 bi-directional DC-DC converter is shown in Fig. 1. Since the synchronous buck/boost converter is the simplest bi-directional converter, it is selected as the base topology. Other supporting circuitry includes current sensors, temperature sensors, digital controllers,s and housekeeping power supply. 


GaN FETs used in 48V applications usually have a 4 times better figure of merit (die area · RDS(on)) compared to similar MOSFETs. For the same gate voltage of 5V, GaN FETs have at least 5 times a lower gate charge than MOSFETs. Other important advantages of GaN FETs include lower COSS, faster voltage transition, zero reverse recoveries and they are physically smaller.


The eGaN FET EPC2302 is used in this design. It has a low inductance 3 x 5mm QFN package with an exposed top for excellent thermal management. With 1.8mΩ RDS(on), the rated peak DC current is 101A. Therefore, the two-phase approach is selected so that the FET current requirement is reduced, i.e., at 14V 2kW output, the DC current in each phase is 70A. This also reduces the current rating requirement for the inductors. 


The MPQ1918-AEC1 gate drivers in this design are AEC-Q100 qualified and use a bootstrap technique with voltage clamping for driving high-side FET. They also have fast propagation times and excellent propagation delay matching of less than 1.5ns typical. 


Vishay IHTH-1125KZ-5A series inductors offer high current ratings for the inductance. In this design, the 1.0µH inductor and 500 kHz switching frequency is selected, resulting in an 80A peak inductor current. 


To ensure accurate phase current balancing, current sensing using precision shunt resistors is preferred over inductor DCR current sensing. However, shunt resistors rated for above 70A usually have a large footprint, and therefore high parasitic inductance. This inductance can produce high noise that saturates the current sense amplifier and voids the measurement. A simple solution is to add an RC filter network with a matched time constant. The MCP6C02 current sense amplifier is used in this design, with a maximum bandwidth of 500kHz and 50V/V gain. This results in 10mV/A total current sensing gain for a 0.2mΩ shunt.

Figure 1. EPC9165 system block diagram

The symmetrical layout between the two-phase is also critical for phase current balancing and minimizing other effects from the mismatch, such as gate drive delay, switching transition speed, overshoot, etc. Figure 2 shows the layout example around the GaN FETs in this design, which utilizes the internal vertical layout technique by placing the decoupling capacitors close to the FETs with a solid ground plane underneath.

(a)


(b)

Figure 2. Example layout of the top two layers of the printed circuit board around GaN FETs: 

(a) a top layer consisting of ground (GND), switching node (SW), and input (VIN) nets

(b) middle layer 1 of the solid ground plane.


Digital Control 

A dsPIC33CK256MP503 digital controller from Microchip is used in this design. It is a 16-bit processor with a maximum CPU speed of 100 MIPS. The pulse-width modulation (PWM) module can be configured in high-resolution mode, resulting in 250ps resolution in duty cycle and dead times, allowing accurate adjustment of dead times to fully exploit the high performance of GaN FETs. 


Digital average current mode control is implemented for both buck and boost modes. The current sensing circuitry consists of sense resistors and differential amplifiers. In this design, low loss 0.2mΩ sense resistors and low-noise amplifiers MCP6C02 are used. The control block diagram is shown in Fig. 3. The same current reference IREF is used for the two independent current loops. As a result, the current in both inductors will be regulated to the same value. The bandwidth of the two inner current loops is set to 6kHz, and the outer voltage loop bandwidth is set to 800Hz


Figure 3. The digital average current mode control diagram


Thermal Management 

At a full output power of 2kW, a heatsink is required for the GaN FETs. A standard commercially available 8th brick heatsink is used. Four metal spacers are installed on the PCB to provide the appropriate clearance for the heatsink mounting. A thermal interface material (TIM) is required between the FETs and the heatsink. Usually, the material needs to have a) mechanical compliance due to compression, b) electrical insulation and c) good thermal conductivity. In this design, a TIM with 17.8W/mK is used. Figure 4 shows the 3D heatsink installation view.


Figure 4. Heatsink installation view, showing the SMD spacers, thermal interface material


Performance Results 

Figure 5 shows a photo of the EPC9165 converter without the heatsink mounted. The dimensions are 4.3 x 2.8 x 1.6 inches (108 x 70 x 40mm) excluding the edge connectors.


Figure 5. Photo of the EPC9165 converter with the EPC9528 dsPIC33CK controller module attached


With the heatsink installed and 1700 LFM airflow, the converter was operated at 48V input, 14.3V output and tested at 500kHz, and the efficiency results are shown in Fig. 6. At 500kHz, using a 1µH inductor, the converter achieved a peak efficiency of 97%. The converter was also tested at 14.3V input and 48V output for boost mode operation, as shown in Fig. 7. 


At full load, EPC eGaN FETs can operate with 96% efficiency at the 500kHz switching frequency, enabling 1kW/phase compared to silicon-based solutions, which are limited to 600W/phase due to the limitation on the inductor current at 100kHz maximum switching frequency.

Figure 6. Measured converter efficiency at 500kHz, 48V input, and 14.3V output


Figure 7. Measured converter efficiency at 500kHz, 14.3V input, and 48V output


Conclusion 

This application note introduces a bi-directional high-power EPC9165 converter for mild-hybrid cars and battery power backup units using four EPC EPC2302 packaged eGaN FETs. When converting between 48V and 14.3V, the efficiency exceeds 96% with a 500kHz switching frequency. This design meets the priorities of size, cost, and high reliability that a 48V/12V bidirectional converter, with power ranging from 1.5kW to 6kW demands.

授权代理商:世强先进(深圳)科技股份有限公司
技术资料,数据手册,3D模型库,原理图,PCB封装文件,选型指南来源平台:世强硬创平台www.sekorm.com
现货商城,价格查询,交期查询,订货,现货采购,在线购买,样品申请渠道:世强硬创平台电子商城www.sekorm.com/supply/
概念,方案,设计,选型,BOM优化,FAE技术支持,样品,加工定制,测试,量产供应服务提供:世强硬创平台www.sekorm.com
集成电路,电子元件,电子材料,电气自动化,电机,仪器全品类供应:世强硬创平台www.sekorm.com
  • +1 赞 0
  • 收藏
  • 评论 0

本文由董慧转载自EPC,原文标题为:How to Design a 2 kW 48 V/12 V Bi-Directional Power Module with packaged eGaN® FETs,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

评论

   |   

提交评论

全部评论(0

暂无评论

相关推荐

How to Design a 2kW 48V/12V Bi-Directional Power Module with GaN FETs for 48V Mild Hybrid Electric Vehicles

This artical tells how to Design a 2kW 48V/12V Bi-Directional Power Module with GaN FETs for 48V Mild Hybrid Electric Vehicles. A new reference design demo board, EPC EPC9165, is available to help jump start the design of a 2 kW bi-directional converter.

设计经验    发布时间 : 2022-09-01

EPC GaN ICs Simplify Motor Joint Inverter Design for Humanoid Robots

This article introduces the latest generation of GaN integrated circuits (EPC23102/3/4) for inverter applications. Several evaluation boards with new features, discussed in the following sections, have been developed to demonstrate the effectiveness of implementing ICs in inverter performance. In particular, the ICs’ temperature versus the motor phase current will be reported and discussed.

设计经验    发布时间 : 2024-07-27

DC-DC Reference Design Board Targets e-Mobility

A bidirectional converter developed by gallium nitride specialist EPC in collaboration with MPS operates at an advertised peak efficiency of 97 percent.

设计经验    发布时间 : 2022-03-03

EPC(宜普)eGaN® 氮化镓晶体管(GaN FET)和集成电路及开发板/演示板/评估套件选型指南

目录- eGaN FETs and ICs    eGaN® Integrated Circuits    Half-Bridge Development Boards    DrGaN    DC-DC Conversion    Lidar/Motor Drive    AC/DC Conversion   

型号- EPC2212,EPC2214,EPC2059,EPC2216,EPC2215,EPC2218,EPC2016C,EPC2050,EPC2052,EPC2051,EPC2054,EPC2053,EPC2055,EPC9086,EPC2218A,EPC90153,EPC9087,EPC90154,EPC2069,EPC2102,EPC2101,EPC2104,EPC2103,EPC2106,EPC2105,EPC2107,EPC9018,EPC2065,EPC90151,EPC90152,EPC21702,EPC2100,EPC2067,EPC2221,EPC21701,EPC2066,EPC90150,EPC9097,EPC90145,EPC90142,EPC9098,EPC90143,EPC9099,EPC9092,EPC90148,EPC90149,EPC90146,EPC9094,EPC90147,EPC2219,EPC9091,EPC2619,EPC2036,EPC2035,EPC2038,EPC2037,EPC2014C,EPC2039,EPC9507,EPC2030,EPC9067,EPC2032,EPC2031,EPC9068,EPC2152,EPC2033,EPC9063,EPC9186,EPC9066,EPC8010,EPC9180,EPC2204A,EPC9181,EPC9061,EPC2308,EPC2307,EPC9005C,UP1966E,EPC2203,EPC9004C,EPC2202,EPC2204,EPC2015C,EPC2207,EPC2206,EPC2040,EPC2045,EPC2044,EPC9194,EPC2012C,EPC2019,EPC9049,EPC9203,EPC9204,EPC9205,EPC2252,EPC9166,EPC9167,EPC9047,EPC9201,EPC9041,EPC9162,EPC9163,EPC9165,EPC7020,EPC9160,EPC9040,EPC2024,EPC8009,EPC2302,EPC2001C,EPC2029,EPC2304,EPC2306,EPC2305,EPC8002,EPC2021,EPC9177,EPC2020,EPC9057,EPC9167HC,EPC2023,EPC9179,EPC9058,EPC8004,EPC2022,EPC9059,EPC9173,EPC9174,EPC9055,EPC9176,EPC9170,EPC9050,EPC9171,EPC9172,EPC2010C,EPC2034C,EPC7007,EPC7002,EPC9148,EPC2071,EPC7001,EPC23101,EPC23102,EPC23103,EPC9144,EPC90140,EPC23104,EPC2111,EPC7004,EPC2110,EPC7003,EPC90133,EPC90132,EPC9022,EPC9143,EPC90137,EPC90138,EPC90135,EPC90139,EPC7019,EPC7018,EPC9038,EPC9159,EPC9039,EPC2007C,EPC21603,EPC9156,EPC9036,EPC9157,EPC9037,EPC2088,EPC7014,EPC21601,EPC9158,EPC90122,EPC9151,EPC9031,EPC90123,EPC90120,EPC9153,EPC9033,EPC90121,EPC9154,EPC90124,EPC9150,EPC90128

选型指南  -  EPC  - 2024/1/3 PDF 英文 下载

Enhancement-Mode Gallium Nitride Technology

型号- EPC2212,N/A,EPC2214,EPC2059,EPC2216,EPC2215,EPC2218,EPC2050,EPC9126,EPC2052,EPC2051,EPC2054,EPC2053,EPC2055,EPC9086,EPC2218A,EPC90153,EPC2102,EPC2101,EPC2104,EPC2103,EPC2106,EPC2105,EPC2107,EPC2065,EPC90151,EPC90152,EPC2100,EPC2067,EPC21701,EPC2221,EPC2066,EPC90150,EPC9097,EPC90145,EPC90142,EPC9098,EPC90143,EPC9099,EPC9092,EPC90148,EPC90149,EPC90146,EPC9094,EPC90147,EPC2219,EPC9091,EPC2619,EPC2036,EPC2035,EPC2038,EPC2037,EPC2014C,EPC9507,EPC2031,EPC2152,EPC9063,EPC9126HC,EPC2204A,EPC9061,EPC2308,EPC2307,EPC9005C,UP1966E,EPC2203,EPC9004C,EPC2204,EPC2207,EPC2206,EPC2044,EPC2012C,EPC9049,EPC2252,EPC9166,EPC9167,EPC9041,EPC9162,EPC9165,EPC7020,EPC9160,EPC9040,EPC2302,EPC2001C,EPC2304,EPC2306,EPC2305,EPC8002,EPC9177,EPC9167HC,EPC9179,EPC9173,EPC9174,EPC9055,EPC9050,EPC9171,EPC9172,EPC7007,EPC2034C,EPC7002,EPC9148,EPC23101,EPC2071,EPC7001,EPC23102,EPC23103,EPC9144,EPC23104,EPC90140,EPC2111,EPC7004,EPC7003,EPC90132,EPC9022,EPC90137,EPC90138,EPC90135,EPC7019,EPC7018,EPC9038,EPC9039,EPC21603,EPC9156,EPC9036,EPC9157,EPC9037,EPC21601,EPC2088,EPC7014,EPC90122,EPC90123,EPC90120,EPC9153,EPC90121,EPC9154,EPC90124,EPC9150,EPC90128

商品及供应商介绍  -  EPC  - 2023/7/11 PDF 英文 下载 查看更多版本

技术文档  -  EPC  - May 2024 PDF 英文 下载

Intellectual Power Amplifier Module Based on GaN FETs

To simplify and accelerate the development process of many devices (D-class audio amplifiers, AC current and voltage calibrators, power supply modulators etc.), the idea of creating an Intellectual Power Amplifier Module (IPAM) appeared. IPAM is a fully differential pulsing power amplifier covered by a common negative feedback. The module contains small FPGA chip. The development of the output choke has turned into a separate R&D work related to the need to study the parameters of the newest high-frequency power ferrites manufactured by TDK/Epcos and Ferroxcube.

原厂动态    发布时间 : 2021-05-24

GaN Reliability and Lifetime Projections: Phase 16

型号- EPC2302,EPC2218A,EPC23102,EPC21701,EPC21601

测试报告  -  EPC  - 2024/2/21 PDF 英文 下载

EPC Announces a New 3-phase BLDC Motor Drive Inverter Using the EPC2065 EGaN® FET

EPC announces the availability of the EPC9167, a 3-phase BLDC motor drive inverter using the EPC2065 eGaN® FET.

新产品    发布时间 : 2022-02-26

eGaN FETs Are Low EMI Solutions!

GaN FETs can switch significantly faster than Si MOSFETs causing many system designers to ask − how does higher switching speeds impact EMI? In this blog, EPC discusses simple mitigation techniques for consideration when designing switching converter systems using eGaN® FETs and will show why GaN FETs generate less EMI than MOSFETs, despite their fast-switching speeds.

新产品    发布时间 : 2020-08-15

EPC and Analog Devices Collaborate to Deliver up to 2MHz Switching Frequency for the Highest Density DC-DC Converters Using GaN FETs

EPC and Analog Devices introduce reference design using a new Analog controller fully optimized to drive EPC GaN FETs.

新产品    发布时间 : 2022-03-12

EPC to Showcase Advanced GaN Power Solutions at PCIM Asia 2024

EPC’s GaN Experts will be available during PCIM Asia, showcasing the latest generation of GaN FETs and ICs in a wide variety of real-world applications including AI servers, robotics, and more.

原厂动态    发布时间 : 2024-08-29

The EPC9173 GaN IC Allows Designers of EBikes and Drones to Simplifying Design for Faster Time-To-Market

The EPC9173 tool allows designers of eBikes and drones to enhance motor system size, performance, range, precision, and torque, all while simplifying design for faster time-to-market. The EPC23101 GaN IC featured in this design has exceptionally high electron mobility and a low-temperature coefficient.

应用方案    发布时间 : 2022-09-21

EPC和VIS宣布将共同生产8英寸氮化镓(GaN)功率半导体,显著提升EPC的GaN晶体管和集成电路制造能力

全球领先的氮化镓(GaN)功率FETs和集成电路(IC)厂商EPC和专业IC代工服务提供商世界先进半导体公司(VIS)宣布了一项合作协议,两方将在未来数年内共同生产氮化镓基功率半导体。

原厂动态    发布时间 : 2022-12-14

展开更多

电子商城

查看更多

品牌:EPC

品类:Enhancement Mode Power Transistor

价格:¥31.5367

现货: 1,159

品牌:EPC

品类:Demonstration Board

价格:

现货: 0

品牌:正芯

品类:GaN HEMT

价格:¥1.8824

现货: 0

品牌:EPC

品类:Enhancement Mode Power Transistor

价格:¥2.6758

现货: 42,184

品牌:EPC

品类:Power Transistor

价格:¥8.3620

现货: 13,673

品牌:EPC

品类:Enhancement Mode Power Transistor

价格:¥4.8739

现货: 11,741

品牌:EPC

品类:Enhancement Mode Power Transistor

价格:¥7.0719

现货: 7,706

品牌:EPC

品类:Enhancement-Mode Power Transistor

价格:¥4.6827

现货: 6,661

品牌:EPC

品类:Enhancement Mode Power Transistor

价格:¥6.0206

现货: 6,586

品牌:EPC

品类:Laser Driver

价格:¥8.7920

现货: 6,546

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

现货市场

查看更多

品牌:EPC

品类:Enhancement Mode Power Transistor

价格:¥3.5000

现货:3,059

品牌:EPC

品类:Enhancement Mode Power Transistor

价格:¥26.0000

现货:941

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

查看更多

授权代理品牌:接插件及结构件

查看更多

授权代理品牌:部件、组件及配件

查看更多

授权代理品牌:电源及模块

查看更多

授权代理品牌:电子材料

查看更多

授权代理品牌:仪器仪表及测试配组件

查看更多

授权代理品牌:电工工具及材料

查看更多

授权代理品牌:机械电子元件

查看更多

授权代理品牌:加工与定制

世强和原厂的技术专家将在一个工作日内解答,帮助您快速完成研发及采购。
我要提问

954668/400-830-1766(工作日 9:00-18:00)

service@sekorm.com

研发客服
商务客服
服务热线

联系我们

954668/400-830-1766(工作日 9:00-18:00)

service@sekorm.com

投诉与建议

E-mail:claim@sekorm.com

商务合作

E-mail:contact@sekorm.com

收藏
收藏当前页面