【经验】如何正确地布设运算放大器的电路板即PCB布局
爱浦电子在本文将对正确地布设运算放大器的电路板进行详细的讲解,为工程师们的设计提供理论基础。详细介绍内容如下:
在电路设计过程中,应用工程师往往会忽视印刷电路板(PCB)的布局。通常遇到的问题是,电路的原理图是正确的,但并不起作用,或仅以低性能运行。在本篇文章中,工程师将介绍如何正确地布设运算放大器的电路板以确保其功能、性能和稳健性。
事件重现
工程师与自己的实习生利用增益为2V/V、负荷为10k、电源电压为+/-15V的非反相配置OPA191运算放大器进行设计。图1所示为该设计的原理图。
图1 采用非反相配置的OPA191原理图
工程师指派实习生为该设计布设电路板,同时为他做了PCB布设方面的一般指导(即尽可能缩短电路板的走线路径,同时将组件保持紧密排布,以减小电路板空间),然后让他自行设计。
设计过程到底有多难?其实就是几个电阻器和电容器罢了,不是吗?
图2所示为实习生首次尝试设计的布局。红线为电路板顶层的路径,而蓝线为底层的路径。
图2 首次布局尝试方案
当时意识到电路板布局并不像自己想象的那样直观,工程师觉得应该为实习生做一些更详细的指导。实习生在设计时完全遵从了他的建议,缩短了走线路径,并将各部件紧密地排布在一起。但这种布局还可以进一步改善,从而减小电路板寄生阻抗并优化其性能。
他们所做的首项改进是将电阻R1和R2移至OPA191的倒相引脚(引脚2)旁;这样有助于减小倒相引脚的杂散电容。
运算放大器的倒相引脚是一个高阻抗节点,因此灵敏度较高。较长的走线路径可以作为电线,让高频噪音耦合进信号链。倒相引脚上的PCB电容会引发稳定性问题。因此,倒相引脚上的接点应该越小越好。
将R1和R2移至引脚2旁,可以让负荷电阻器R3旋转180度,从而使去耦电容器C1更贴近OPA191的正电源引脚(引脚7)。让去耦电容器尽可能贴近电源引脚,这一点极其重要。如果去耦电容器与电源引脚之间的走线路径较长,会增大电源引脚的电感,从而降低性能。
他们所做的另一项改进在于第二个去耦电容器C2。不应将VCC与C2的导孔连接放在电容器和电源引脚之间,而应布设在供电电压必须通过电容器进入器件电源引脚的位置。
图3显示了移动每个部件和导孔从而改善布局的方法。
图3 改进布局的各部件位置
可以加宽走线路径,以减小电感,即相当于走线路径所连接的焊盘尺寸。还可以灌流电路板顶层和底层的接地层,从而为返回电流创造一个坚实的低阻抗路径。图4所示为终布局。
图4 终布局
- |
- +1 赞 0
- 收藏
- 评论 0
本文由伊哟转载自爱浦电子,原文标题为:PCB布局必知必会:教你正确地布设运算放大器的电路板,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
相关研发服务和供应服务
相关推荐
【经验】pcb覆铜技巧总结及安全间距、线宽设置指引
一、PCB覆铜技巧 1、如果PCB的地较多,有SGND、AGND、GND,等等,就要根据PCB板面位置的不同,分别以最主要的“地”作为基准参考来独立覆铜,数字地和模拟地分开来敷铜自不多言,同时在覆铜之前,首先加粗相应的电源连线:5.0V、3.3V等等,这样一来,就形成了多个不同形状的多变形结构。
开关电容转换器(SCC)降压装换气解决方案
在这个设计解决方案中,我们讨论了在提高电池容量的同时保留锂离子(Li)单节电池电源架构的挑战,以遵循电池供电设备的功率上升趋势。对于更高效的电池系统,我们提出了一个2:1降压转换器,它可以保留现有的下游1S电源架构,而无需更高的电池充电电流。随后,我们展示了开关电容转换器(SCC)是最好的降压转换器解决方案,这要归功于其高效率和低PCB占位面积。
【经验】如何正确理解AC耦合电容,选择性能更好的高频PCB板材料?
爱浦电子在本文将对如何正确理解AC耦合电容进行详细的讲解,为工程师们的设计提供理论基础。在高频电路设计中,经常会用到AC耦合电容,要么在芯片之间加两颗直连,要么在芯片与连接器之间加两颗。看似简单,但一切都因为信号的高速而不同。信号的高速传输使这颗电容变得不“理想”,这颗电容没有设计好,就可能会导致整个项目的失败。因此,对高速电路而言,这颗AC耦合电容没有优化好将是“致命”的。
【技术】解析逐次逼近型A/D转换器的基本工作原理及转换电路图设计
爱浦电子在本文将对A/D转换器工作原理及转换电路图设计进行了详细的讲解,为工程师们的设计提供理论基础。
【经验】了解开关电源PCB的布局、走线原则等设计要点
爱浦电子将在本文介绍开关电源PCB的设计要点。PCB设计是开关电源设计非常重要的一步,对电源的电性能、EMC、可靠性、可生产性都有关联。当前开关电源的功率密度越来越高,对PCB布局、布线的要求也越发严格,合理科学的PCB设计让电源开发事半功倍,以下细节供您参考。
高速放大器进行设计时的三个要点,千万别忽视!
本文爱浦电子来为大家介绍高速放大器进行设计时的三个要点,希望对各位工程师朋友有所帮助。
【经验】电压跟随器运算放大器电路设计要点介绍
我们知道,将电阻器连接到基本运算放大器,可以产生各种反相和同相输出及配置以及它们各自的增益。为了更好地理解,下面将列出关于“基本运算放大器构建模块”的相关内容,我们可以使用它们来创建不同的电子电路和滤波器。
【技术】解析运放里常说的“频率补偿”及“单位增益稳定”的含义
爱浦电子在本文将介绍“频率补偿”及“单位增益稳定”的含义。看到一个运放的手册时会看到有写明“单位增益稳定”,那没有这样写明的,就会代表单位增益电路不稳定?其实这和主极点有直接的联系,更进一步说是由运放的频率补偿决定的。
经典电路剖析,警惕运放电路中最容易混淆的几个点
对于运算放大器而言,分析的思路大同小异,都是以“虚短虚断”为基本原则,本文结合虚短虚断原则,爱浦电子介绍下反相放大电路、同相放大电路和跟随器的计算过程,理解这三个过程以后,就可以举一反三,计算其他结构的放大电路。
爱浦电子电源模块行业应用广泛
电源模块是一种可直接贴装在印刷电路板上的电源供应器,其特点是可为专用集成电路、数字信号处理器、微处理器、存储器、继电器、直流马达及其他数字或模拟负载提供供电。爱浦电源推出的ACDC电源、DCDC电源可服务于众多需供电的场景。
【经验】电源PCB的电感放置需要注意哪几个点?
爱浦电子在本文将对电源PCB的电感放置需要注意哪几个点进行详细的讲解。用于电压转换的开关稳压器使用电感来临时存储能量。用于电压转换的开关稳压器使用电感来临时存储能量。这些电感的尺寸通常非常大,必须在开关稳压器的印刷电路板(PCB)布局中为其安排位置。
如何设计准确的直流电源?
电池测试、电化学阻抗谱和半导体测试等测试和测量应用需要准确的电流和电压输出直流电源。在环境温度变化为±5℃时,设备的电流和电压控制精度需要优于满量程的±0.02%。精度在很大程度上取决于电流感应电阻器和放大器的温漂。在本文中,爱浦电子将带你了解不同元件如何影响系统精度,以及如何为精密直流电源的设计选择适合的元件。
【经验】解析RS485接口6KV防雷电路设计及PCB布局
RS485用于设备与计算机或其它设备之间通讯,在产品应用中其走线多与电源、功率信号等混合在一起,存在EMC隐患。本方案爱浦电子从EMC原理上,进行了相关的抑制干扰和抗敏感度的设计,从设计层次解决EMC问题。
【经验】PCB抄板及反向研发技巧总结
PCB抄板,即在已经有电子产品实物和电路板实物的前提下,利用反向研发技术手段对电路板进行逆向解析,将原有产品的PCB文件、物料清单(BOM)文件、原理图文件等技术文件以及PCB丝印生产文件进行1:1的还原。然后再利用这些技术文件和生产文件进行PCB制板、元器件焊接、飞针测试、电路板调试,完成原电路板样板的完整复制。
PCB设计时的谐波失真是如何产生的?
探讨PCB设计时的谐波失真是如何产生的。
电子商城
现货市场
服务
测试等级:空气放电30KV±5%;接触放电30KV±5%,适用标准:GB/T 17626.2、IEC61000-4-2、ISO10605、GB/T 19951;给用户产品出电路保护设计方案建议及整改。点击预约,支持到场/视频直播测试,资深专家全程指导。
实验室地址: 深圳/上海 提交需求>
测试范围:扬兴晶振全系列晶体,通过对晶体回路匹配分析,调整频率、驱动功率和起振能力,解决频偏、不起振、干扰、频率错误等问题。技术专家免费分析,测完如有问题,会进一步晶振烧录/修改电路。
实验室地址: 深圳 提交需求>
登录 | 立即注册
提交评论