The Advantages of Using GaN-based Inverters Instead of Silicon-based Inverters for Motor Drive Designs
This article discusses the advantages of using GaN-based inverters instead of silicon-based inverters for motor drive designs to operate smoother while reducing size and weight. These advantages are critical for motor drives used in typical applications such as warehousing & logistical robots, servo drives, e-bikes & e-scooters, collaborative and low voltage robots and medical robotics, industrial drones, and automotive motors.
Omdia forecasts that worldwide shipments of warehousing and logistics robots will grow rapidly over the next 5 years from 194,000 units in 2018 to 938,000 units annually by 2022, with the rate of growth slowing after 2021 as many major players will have adopted robotic systems by then. Worldwide revenue for this category will increase from $8.3 billion in 2018 to $30.8 billion in 2022, providing significant opportunities for established participants and emerging players.
GaN Advantages
GaN FETs and GaN ICs switch faster and smoother and have zero reverse recovery compared to equivalently specified silicon MOSFETs. This faster and better switching allows operation at higher switching frequencies in inverter designs to eliminate electrolytic capacitors. Further, GaN can operate at a minimal dead time, which increases the effective torque per ampere obtained from the motor, thus making the motor more efficient. In addition, GaN allows for the integration of the inverter with the motor resulting in an overall reduction in size and weight of the system. Table 1 shows a comparison of EPC GaN FETs vs. MOSFETs with similar RDS(on) ratings.
Table 1:Key parameter comparision of EPC GaN FETs vs. MOSFETs
In a typical motor design, the PWM frequency is between 20 and 40 kHz, with dead times between 100 ns and 500 ns. The input cables can be at least 10 to 20 cm long and become a source of EMI, conducted or radiated. Therefore, in traditional motor drive designs, it is common to add an input EMI LC filter. We will show that this can be eliminated in GaN-based motor drive designs.
Capacitor Selection
When comparing electrolytic with ceramic capacitors, remember that RMS current in the capacitor does not depend on PWM frequency, while the voltage ripple is inversely proportional to PWM frequency and capacitance. Therefore, electrolytic capacitors are sized with RMS current. They are oversized, and their value does not change with PWM frequency. Ceramic caps are sized with voltage ripple and are sized in line with the minimum required capacitance. Their value and size decrease with increasing PWM frequency. 100 kHz operation is a sweet spot for ceramic capacitors ESR. This demonstrates a clear advantage of ceramic capacitors in terms of occupied volume reliability, cost, and EMI.
Dead-Time Effect
Figure 1
On the left side of Figure 1, the effect of 500 ns dead time on a motor operated at 20 kHz PWM is shown. There are six discontinuities in the current, circled in orange. These discontinuities are responsible for the 6th harmonic in the torque. It is an even harmonic, so it produces only vibration.
On the right side of Figure 1, it is shown that by reducing the dead time to 14 ns, the discontinuities disappear, as does the 6th harmonic.
In Figure 2, the torque signal is obtained with a torque/speed transducer and analyzed with FFT. The 6th (even) harmonic of the torque signal that is present on the left when the dead time is 500 ns is completely absent when dead time is reduced to 14 ns in the setup on the right.
Figure 2
In the EPC Italy Motor Drive lab, an experiment was run to further evaluate these differences. Two systems, both at 36 VDS, 5ARMS, and 400RPM, are compared. Setup 1 uses 2x330µF electrolytic capacitors and 1x2.7µH input inductors, running at 20 kHz with 500 ns dead time, typical of a traditional silicon MOSFET-based motor drive. Setup 2 operates at 100kHz, 14ns dead time, and uses 2x22µF ceramic capacitors and no input inductor, which is something only achievable with GaN.
Table 2 is a summary of the overall impact of the two setups. By running at 100 kHz, the GaN inverter allows the usage of ceramic capacitors in place of bulky electrolytic capacitors. By reducing the dead time it is possible to get more torque per ampere, making the motor more efficient and thus making the overall system more efficient. The higher frequency setup increases the overall system efficiency from 65.3% to 71.8%.
Table 2: Summary of two motor drive setups
Conclusion
The faster and better switching performance of GaN FETs and ICs allows inverter operation at higher switching frequencies to eliminate electrolytic capacitors. Further, GaN can operate at a minimal dead time. This reduction in dead time increases the effective torque per ampere obtained from the motor, making the motor more efficient and allowing for the integration of the inverter with the motor, further reducing overall system size and weight. These advantages are critical for the motor drives used in eMobility solutions, robotics, and drones.
- |
- +1 赞 0
- 收藏
- 评论 0
本文由董慧转载自EPC,原文标题为:Motor Drives Showdown – GaN vs. Silicon,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
相关推荐
How to Design a 2kW 48V/12V Bi-Directional Power Module with GaN FETs for 48V Mild Hybrid Electric Vehicles
This artical tells how to Design a 2kW 48V/12V Bi-Directional Power Module with GaN FETs for 48V Mild Hybrid Electric Vehicles. A new reference design demo board, EPC EPC9165, is available to help jump start the design of a 2 kW bi-directional converter.
How to Design a 2 kW 48 V/12 V Bi-Directional Power Module with packaged eGaN® FETs
This application note introduces a bi-directional high-power EPC9165 converter for mild-hybrid cars and battery power backup units using four EPC EPC2302 packaged eGaN FETs. When converting between 48V and 14.3V, the efficiency exceeds 96% with a 500kHz switching frequency.
【经验】EPC开发板评估给定GaN FET或IC在常见应用中的性能分析
本文主要展示了EPC开发板可以很容易地用于评估给定GaNFET或IC在常见应用中的性能,而只需很少的设置工作。将标准EPC9094开发板配置为降压转换器,VIN为140V,VOUT为28V/2.5A以评估200VEPC2054 eGaN FET在各种开关频率下的性能。
EPC(宜普)eGaN® 氮化镓晶体管(GaN FET)和集成电路及开发板/演示板/评估套件选型指南
目录- eGaN FETs and ICs eGaN® Integrated Circuits Half-Bridge Development Boards DrGaN DC-DC Conversion Lidar/Motor Drive AC/DC Conversion
型号- EPC2212,EPC2214,EPC2059,EPC2216,EPC2215,EPC2218,EPC2016C,EPC2050,EPC2052,EPC2051,EPC2054,EPC2053,EPC2055,EPC9086,EPC2218A,EPC90153,EPC9087,EPC90154,EPC2069,EPC2102,EPC2101,EPC2104,EPC2103,EPC2106,EPC2105,EPC2107,EPC9018,EPC2065,EPC90151,EPC21702,EPC90152,EPC2067,EPC2100,EPC2221,EPC21701,EPC2066,EPC90150,EPC90145,EPC9097,EPC90142,EPC9098,EPC90143,EPC9099,EPC90148,EPC9092,EPC90149,EPC90146,EPC9094,EPC90147,EPC2219,EPC9091,EPC2619,EPC2036,EPC2035,EPC2038,EPC2037,EPC2014C,EPC2039,EPC9507,EPC2030,EPC2032,EPC9067,EPC2031,EPC9068,EPC2152,EPC2033,EPC9063,EPC9186,EPC8010,EPC9066,EPC9180,EPC2204A,EPC9181,EPC9061,EPC2308,EPC2307,EPC9005C,UP1966E,EPC2203,EPC9004C,EPC2202,EPC2204,EPC2015C,EPC2207,EPC2206,EPC2040,EPC2045,EPC2044,EPC9194,EPC2012C,EPC2019,EPC9049,EPC9203,EPC9204,EPC9205,EPC2252,EPC9166,EPC9167,EPC9047,EPC9201,EPC9041,EPC9162,EPC9163,EPC9165,EPC7020,EPC9160,EPC9040,EPC90133/,EPC2024,EPC2302,EPC8009,EPC2001C,EPC2029,EPC2304,EPC2306,EPC2305,EPC8002,EPC2021,EPC9177,EPC2020,EPC9057,EPC9167HC,EPC2023,EPC9058,EPC9179,EPC2022,EPC8004,EPC9059,EPC9173,EPC9174,EPC9055,EPC9176,EPC9170,EPC9050,EPC9171,EPC9172,EPC2010C,EPC2034C,EPC7007,EPC7002,EPC9148,EPC2071,EPC7001,EPC23101,EPC23102,EPC23103,EPC90140,EPC9144,EPC23104,EPC2111,EPC7004,EPC2110,EPC7003,EPC90133,EPC90132,EPC9022,EPC9143,EPC90137,EPC90138,EPC90135,EPC90139,EPC7019,EPC7018,EPC9038,EPC9159,EPC2007C,EPC9039,EPC21603,EPC9156,EPC9036,EPC9157,EPC2088,EPC7014,EPC9037,EPC21601,EPC9158,EPC90122,EPC9151,EPC90123,EPC9031,EPC90120,EPC9153,EPC90121,EPC9033,EPC9154,EPC90124,EPC9150,EPC90128
EPC eGaN®FET/晶体管选型表
EPC提供增强型氮化镓半桥功率晶体管/增强型功率晶体管/功率晶体管的选型:配置:Dual Common Source、Dual with Sync Boot、Half Bridge、Half Bridge Driver IC、HS FET + Driver + Level Shift、Single、Single - AEC Q101、Single – Rad Hard、Single with Gate Diode、Single with Gate Diode – AEC-Q101、Dual Common Source - AEC Q101,VDS最大值(V):15~350V;VGS最大值(V):5.75~7V
产品型号
|
品类
|
Configuration
|
VDSmax(V)
|
VGSmax(V)
|
Max RDS(on) (mΩ)
@ 5 VGS
|
QG typ(nC)
|
QGS typ (nC)
|
QGD typ (nC)
|
QOSS typ (nC)
|
QRR(nC)
|
CISS (pF)
|
COSS (pF)
|
CRSS (pF)
|
ID(A)
|
Pulsed ID (A)
|
Max TJ (°C)
|
Package(mm)
|
Launch Date
|
EPC2040
|
Enhancement Mode Power Transistor
|
Single
|
15
|
6
|
30
|
0.745
|
0.23
|
0.14
|
0.42
|
0
|
86
|
67
|
20
|
3.4
|
28
|
150
|
BGA 0.85 x 1.2
|
Apr, 2017
|
选型表 - EPC 立即选型
用于DC-DC转换的镓氮®FET和IC应用简介
描述- 本资料介绍了eGaN® FETs和ICs在DC-DC转换中的应用,重点强调了其高效能、高功率密度和小型化的特点。资料中详细展示了不同型号的产品及其在48V至12V转换中的应用,包括高效能计算和电信应用,以及汽车电子领域。此外,还提供了相关产品的详细规格和开发板信息,以帮助工程师进行设计和评估。
型号- EPC2057,N/A,EPC2059,EPC9003C,EPC2215,EPC2218,EPC2016C,EPC2052,EPC2051,EPC2053,EPC2055,EPC90155,EPC90156,EPC90153,EPC2101,EPC2106,EPC2105,EPC90151,EPC2065,EPC90152,EPC2067,EPC2100,EPC9014,EPC2066,EPC90150,EPC9097,EPC90145,EPC90142,EPC9098,EPC90143,EPC9099,EPC9092,EPC90148,EPC90146,EPC90147,EPC9091,EPC2619,EPC2014C,EPC2030,EPC2032,EPC2152,EPC2031,EPC2033,EPC9060,EPC9061,EPC9062,EPC2308,EPC2307,EPC9005C,EPC2204,EPC2207,EPC2206,EPC9195,EPC2019,EPC9166,EPC2252,EPC9047,EPC9162,EPC9041,EPC9163,EPC9165,EPC9160,EPC2302,EPC2304,EPC2306,EPC9010C,EPC2305,EPC9177,EPC2020,EPC9179,EPC2023,EPC9174,EPC9055,EPC9170,EPC9006C,EPC2234,EPC2010C,EPC9148,EPC23101,EPC2071,EPC23102,EPC23103,EPC23104,EPC90140,EPC9143,EPC90132,EPC90137,EPC91106,EPC90138,EPC90135,EPC91108,EPC9159,EPC2007C,EPC2361,EPC9157,EPC9036,EPC9158,EPC9037,EPC2088,EPC9151,EPC90122,EPC9031,EPC90123,EPC9153,EPC90120,EPC9033,EPC90124
【IC】EPC推出新型80V、40A eToF™激光驱动器GaN IC,实现更高功率密度激光雷达系统
宜普电源转换公司(EPC)推出新型氮化镓集成电路EPC21701,这是一款80V激光驱动器IC,可提供15A脉冲电流,适用于飞行时间激光雷达应用(ToF激光雷达应用),包括真空吸尘器、机器人、3D安全摄像头和3D传感器。
【元件】EPC新推80V氮化镓晶体管EPC2204A/EPC2218A,具有较低的栅极电荷,可用于自动驾驶激光雷达
EPC推出了两颗新的80V AEC-Q101认证的氮化镓晶体管(GaN FETs),为设计者提供了比硅MOSFET更小、更高效的解决方案,可用于汽车48V-12V DC-DC转换、信息娱乐和自动驾驶的激光雷达。
USB功率传输的进步:氮化镓技术的效率和高功率密度
描述- 本文探讨了USB技术,特别是USB Power Delivery (USB PD) 3.1规范的演变,以及GaN技术在提高功率传输效率和密度中的作用。文章强调了现代电子设备日益增长的功率需求带来的挑战,并说明了GaN技术如何解决这些挑战。文章以EPC9195为例,展示了高功率密度USB PD充电器的设计,强调了GaN晶体管和模拟控制器在实现高效率和紧凑性方面的优势。实验结果证明了该设计的性能和效率,使其成为需要USB PD 3.1兼容性的下一代电子设备的理想解决方案。
型号- EPC9195,EPC2619,LTC7891
【视频】EPC发挥其GaN技术优势,将帮助实现高效能电机驱动应用和DC/DC转换器
型号- EPC9173,EPC2302,EPC2304,EPC2306,EPC2305,EPC2308,EPC2307,EPC23102
【视频】EPC氮化镓产品在DCDC的应用,可减少损耗
描述- Efficient Power Conversion (EPC) 作为全球领先的功率转换技术供应商,提供基于氮化镓 (GaN) 的场效应晶体管 (FET) 和集成电路 (IC)。EPC 的 GaN 基器件具有高效率、快速开关速度、小型化和低成本等优势,广泛应用于消费电子、通信、汽车和可再生能源领域。资料中详细介绍了 GaN 基 DC-DC 转换器,包括企业电源架构、功率密度、EPC9159 转换器规格、转换器概述、特色 GaN FET 以及效率与损耗测量等。此外,还讨论了 GaN FET 在提高功率密度和简化设计方面的优势。
型号- EPC2302,EPC2305,EPC2308,EPC23101,EPC23102
氮化镓可靠性和寿命预测:第16阶段
描述- 本报告详细探讨了氮化镓(GaN)器件的可靠性,包括失效机制、测试方法以及在不同应用中的可靠性预测。报告重点介绍了测试至失效方法在确定GaN器件内在失效机制方面的作用,并提供了针对不同应用(如太阳能、DC-DC转换和激光雷达)的可靠性预测指南。此外,报告还讨论了热机械可靠性、过电压指南以及优化焊接工艺的方法。
型号- EPC2302,EPC2218A,EPC23102,EPC21701,EPC21601
【应用】基于GaN(氮化镓)的D类音频放大器,实现高质量、低成本的音质
现在,氮化镓FET和IC的出现正在迎来高质量、低成本D类音频放大器的时代。基于GaN的FET和IC更优异的开关和热性能产生的波形比硅MOSFET所能达到的波形更接近所需的理想波形。采用GaN技术的高级音频D类放大器提供高于A类放大器设计的音质。
BRC Solar Selects EPC 100V eGaN FETs for Next Generation Solar Optimizer
Designing EPC‘s EPC2218 100V FETs into BRC Solar GmbH‘s next generation M500/14 power optimizer has enabled a higher current density due to the low power dissipation and the small size of the GaN FET making the critical load circuit more compact.
将氮化镓场效应晶体管与专为硅MOSFET设计的控制器和栅极驱动器结合使用
描述- 本文探讨了使用通用门驱动器与氮化镓(GaN)FET配合使用时需要注意的关键因素。文章详细介绍了GaN FET与硅MOSFET之间的主要差异,包括门电压水平、开关速度、反向导通电压降和物理结构等。此外,文章还提供了将MOSFET驱动器转换为适用于GaN FET的建议步骤,包括使用外部自举二极管、自举钳位、门返回电阻和反向导通钳位等。最后,文章强调了在设计使用集成门驱动器的控制器IC时,需要考虑的布局和设计折衷方案。
电子商城
现货市场
服务
可烧录IC封装SOP/MSOP/SSOP/TSOP/TSSOP/PLCC/QFP/QFN/MLP/MLF/BGA/CSP/SOT/DFN;IC包装Tray/Tube/Tape;IC厂商不限,交期1-3天。支持IC测试(FT/SLT),管装、托盘装、卷带装包装转换,IC打印标记加工。
最小起订量: 1pcs 提交需求>
支持GSM / GPRS 等多种制式产品的射频测试,覆盖所有上行和下行的各项射频指标,包括频差、相差、调制、功率、功控、包络、邻道泄漏比、频谱、杂散、灵敏度、同道干扰、邻道干扰、互调、阻塞等等。满足CE / FCC / IC / TELEC等主流认证的射频测试需求。
实验室地址: 深圳 提交需求>
登录 | 立即注册
提交评论