Renesas Accelerates ADAS and AD Development with Best-in-Class R-Car V3U ASIL D System on Chip
Open, Scalable Platform with 60 TOPS of Deep Learning Performance, Low Power, and Air Cooling System Drives Central Processing ECUs for Automated Driving
TOKYO, Japan ― Today, RENESAS Electronics Corporation (TSE:6723), a premier supplier of advanced semiconductor solutions, unveiled the R-Car V3U – a best-in-class ASIL D system on chip (SoC) for advanced driver assistance systems (ADAS) and automated driving (AD) systems. Delivering a groundbreaking 60 TOPS with low power consumption for deep learning processing and up to 96,000 DMIPS, the R-Car V3U is built for the performance, safety, and scalability (up and down) demands of ADAS and AD architectures driving next-generation autonomous vehicles.
The new R-Car V3U is the first SoC using the R-Car Gen 4 architecture within the open and flexible Renesas autonomy platform for ADAS and AD. With the launch of R-Car V3U, the platform is now ready to offer complete scalability from entry-level NCAP applications up to highly automated driving systems.
“We are excited to introduce the newest generation of our popular R-Car SoCs for the next generation of ADAS and AD vehicles,” said Naoki Yoshida, Vice President, Automotive Digital Products Marketing Division at Renesas. “The R-Car V3U leverages assets developed on previous-generation devices, such as ADAS and Level 2 perception stack with the R-Car V3M and R-Car V3H, along with the Renesas autonomy platform, to offer a smooth migration path to single-chip Level 3 automated driving with short development turnaround and safe production launch.”
Best-in-class SoC to support the industry’s stringent ASIL D requirements
Automated driving systems require functional safety up to ASIL D – the highest and most stringent automotive safety integrity level specified under the ISO 26262 standard for road vehicles. The best-in-class R-Car V3U SoC integrates multiple sophisticated safety mechanisms that provide high coverage with fast detection and response for random hardware faults, and is expected to achieve ASIL D metrics for the majority of the SoC processing chain, as well as reducing design complexity, time to market, and system cost.
State-of-the-art R-Car deep learning technology at low power consumption
The R-Car V3U delivers highly flexible DNN (Deep Neural Network) and AI machine learning functions. Its flexible architecture is capable of handling any state-of-the-art neural networks for automotive obstacle detection and classification tasks while maintaining 60 TOPS with low power consumption and an air cooling system.
The R-Car V3U also offers a wide range of programmable engines, including DSP for radar processing, multi-threading computer vision engine for traditional computer vision algorithms, image signal processing to enhance image quality, and additional hardware accelerators for key algorithms such as dense optical flow, stereo disparity, and object classification.
Sophisticated embedded software platform development for automated driving
Renesas has developed an open and integrated development environment that enables customers to take advantage of the R-Car platform’s built-in hardware benefits, as well as low power consumption and deterministic real-time software to enable fast time to market for computer vision and deep learning-based solutions.
Easy-to-use debugging and tuning tools for heterogeneous multi-core hardware enable efficient software development while a comprehensive set of example applications and online education resources allows engineers at all levels to jumpstart their design process. Qualified compilers and code generators for compliance with functional safety and cyber security requirements enable the development of safe and secure software development.
Customers can also combine the R-Car V3U with Renesas’ high-performance, low-power RH850 microcontroller, integrated power management ICs, and power transistor devices to access all the key components required for their ADAS and AD ECUs. This combination also enables them to efficiently develop their systems and speed their time to market.
- |
- +1 赞 0
- 收藏
- 评论 0
本文由青莲居士转载自Renesas,原文标题为:Renesas Accelerates ADAS and Automated Driving Development with Best-in-Class R-Car V3U ASIL D System on Chip,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
相关推荐
【产品】瑞萨新一代SOC R-Car V3H,专为自动驾驶前置摄像头应用
瑞萨开发了专门针对前置摄像头应用的SoC——R-Car V3H,集成了专门针对图像处理的功能单元,它比R-Car V3M在视觉处理方面的性能提高了5倍,并只有0.3瓦的超低功耗,更好的适应自动驾驶的需求。
【产品】全新开放式平台,加大对ADAS及自动驾驶的支持
新型R-Car V3M SoC符合ISO26262功能安全标准,为视觉处理提供了低功耗硬件加速功能,还配有内置图像信号处理器。
【产品】采用业界先进16nm制程,算力高至7TOPS的自动驾驶R-Car SoC,ADAS解决方案 | 视频
在2021年5年28日汽车电子专场|世强硬创新产品研讨会中,瑞萨ADAS技术专家Cross为我们我们做了演讲,视频介绍了R-Car V3X系列ADAS技术方案,重点讲解了R-Car V3M,V3H1.1,V3H2.0的技术指标规格。
【选型】车联网V2X车载端产品(V-BOX)推荐:车规级SoC RCAR M3,7核主频1.8ghz、运力30DMIPS
3GPP给出了相关的应用场景,车联网(V2X)分:V2N/V2I/V2P/V2V这几种应用。那么在硬件设计上,现阶段主要是V2X的车载OBU产品和路测的RSU产品。笔者当下接到的项目则是整合传统T-BOX的OBU产品:V-BOX。整个系统功能融合了TBOX和V2I/V2N/V2V的功能。可以使用瑞萨RCAR M2 SoC,内部集成2核A57和4核A53,还有实时内部R7。
【经验】SoC R CAR V3H2 端侧推理输出的rcar_output.npy数据查看方法
RENESAS R CAR V3H2 端侧推理输出的数据有cvs格式,总共512个输出,同时把cvs数据转化为npy格式保存为一个rcar_output.npy文件,那我如何查看这些数据呢,本文记录数据查看方法。
Renesas(瑞萨电子) R-Car M3车载SoC设备概述手册
本资料概述了Renesas Electronics的R-Car M3系列SoC的初步规格。R-Car M3具备下一代车载导航系统所需的基本功能,包括双核1.5GHz ARM Cortex-A57和四核1.3GHz ARM Cortex-A53核心、LPDDR4内存控制器、多种接口和图形处理单元。资料详细介绍了处理器、内存、显示、视频处理、音频接口、存储和网络等模块的规格和功能。
RENESAS - 片上系统,SOC,STARTER KIT,SOC,入门套件,R-CAR M3,车载通讯,车载娱乐,车载,车联网
【应用】支持EtherCAT协议的瑞萨单芯片SoC用于伺服系统,实现实时响应,降低20%成本
在伺服系统的应用上,对于主控SoC的选择非常重要,Renesas SoC RZ/T1系列的R7S910025可以实现联网实时响应,采用ARM Coretex-R4F高实时性内核,自带FPU浮点运算单元,最高支持600MHz主频,达到962MIPS的运行速度。
DA16200超低功耗Wi-Fi SoC
RENESAS - 片上系统,超低功耗WI-FI SOC,SOC,高度集成的超低功耗WI-FI系统,ULTRA LOW POWER WI-FI SOC,HIGHLY INTEGRATED ULTRA-LOW POWER WI-FI SYSTEM,DA16200-00000F22,DA16200-00001F22,DA16200-00001A32,DA16200-RRXXXYYZ,DA16200,DA16200-00000A32,DOOR LOCKS,车库门开启器,SECURITY SYSTEMS,恒温器,智能家电,VIDEO CAMERA SECURITY SYSTEMS,LIGHTING CONTROL,门锁,资产跟踪器,照明控制,SPRINKLER SYSTEMS,摄像机安全系统,自动喷水灭火系统,SMART APPLIANCES,GARAGE DOOR OPENERS,视频门铃,ASSET TRACKER,百叶窗,VIDEO DOORBELL,BLINDS,THERMOSTATS,安全系统
【经验】使用瑞萨SoC R CAR V3H2 cnn工具链实现onnx模型转caffe模型的实操
R CAR V3H2 的cnn神经网络模块需要运行int16的定点模型,而onnx模型首先需要通过cnn工具链转成caffe模型,然后再转成端侧的可执行模型,本文使用瑞萨的cnn工具链实现onnx模型转caffe模型。
【经验】SoC R CAR V3H2 cnn模型转换后执行以及benchmark过程实操指南
RENESAS SoC R CAR V3H2 cnn模型转换后的输出文件有bcl和.pb 2类,都是可以在端侧执行的,本文记录.pb的推理输出以及benchmark过程实操及解析。
【经验】瑞萨RZ/T1 SoC芯片最小系统关于应用ΔΣ的IGBT波动干扰解决
很多客户使用了瑞萨RZ/T1的ΔΣ delta sigma,反馈IGBT波动有干扰。电源的干扰有可能对芯片的工作有影响,因为没有符合电源规范。变频的是MCU,电源可以+-20%呢,而rzt1是要求5%。 CPU没有出现异常,也可能是因为主频是450M,离600M还有很大的余量。本文介绍解决办法。
Renesa Introduced Its Next Generation ASIL-D SoC and New Automotive-Qualified Position Sensor
Renesas participated in this year‘s digital Embedded World, which took place from 1-5 March and had demonstrations in ADAS, EV, Vehicle Computer, SoC, MCU, Analog and Power, covering the full range of the latest in Renesas Automotive solutions.
【经验】SoC R CAR V3H2 CNN工具链转换restnet18 caffe模型为端侧可执行命令过程解析
RENESAS SoC R CAR V3H2 CNN工具链最主要的功能就是把caffe,onnx等模型转换为V3H2 芯片端可执行模型,命令,本文记录并分析此转换过程。
【经验】解决瑞萨RZ/T1 SoC芯片最小系统硬驱IIC断点死循环问题
客户反应问题:设置瑞萨RZ/T1高性能SoC芯片最小系统硬驱IIC断点,执行不下去,进入while死循环。本文介绍如何解决该问题。
【经验】如何实现SoC R CAR S4从网络启动配置操作?
R CAR S4的DEMO板上emmc中的内核以及文件系统烧录,需要先从网络启动系统后,然后通过挂载emmc,才能把内核以及文件系统copy到emmc分区中,本文记录spider board的配置烧录过程。
电子商城
品牌:SILICON LABS
品类:Wireless Gecko SoC
价格:¥8.1764
现货: 100,879
品牌:SILICON LABS
品类:Wireless Gecko SoC
价格:¥10.4994
现货: 93,399
品牌:SILICON LABS
品类:Mighty Gecko Multi-Protocol Wireless SoC
价格:¥27.0929
现货: 73,767
现货市场
登录 | 立即注册
提交评论