Five Tests to Ensure the Fiber Patch Cord Quality
The quality of fiber patch cords affects the entire fiber-optic link. Each fiber patch cord must be strictly tested before leaving the factory. So what tests will a fiber patch cord manufacturer do to ensure the high quality of patch cords?
In order to ensure the quality of optical patch cords, the following five types of inspection tests are generally carried out before leaving the factory.
1. Fiber patch cord insertion loss/return loss detection
Insertion loss and return loss are key parameters that affect optical patch cords. The TIA standard clearly stipulates that the maximum insertion loss of the optical patch cord is 0.75dB (that is, the acceptable maximum value).
For most fiber patch cables on the market, the normal range of insertion loss is between 0.3dB and 0.5dB, and the range of some low insertion loss is between 0.15dB and 0.2dB. Return loss values are expressed in dB and are usually negative, so higher values are better, and typical specifications range from -15 to -60 dB.
According to industry standards, the return loss of Ultra PC polished fiber optic connectors should be greater than 50dB, and the return loss of bevel polish is usually greater than 60dB. PC type should be greater than 40dB. For multimode fiber, typical RL values are between 20 and 40dB.
The indicators of general carrier-grade jumpers are that the insertion loss is less than 0.3dB, and the return loss is greater than 45dB.
2. Fiber patch cord end face inspection
The cleaning of the end face of the optical fiber connector directly affects its performance. For example, scratches, pits, cracks, dust pollution, etc. on the end face of the optical fiber will cause the loss of the connection signal, resulting in poor insertion and return loss.
3. Fiber patch cord 3D interferometer inspection
3D interferometer testing is mainly to test the geometry of the fiber end face, and the parameters include curvature radius, vertex offset, fiber height, and so on. The end face of the fiber patch cord needs to be ground into a spherical surface, but the products manufactured by the actual production process cannot be perfect.
What are the appropriate values for the radius of curvature, vertex offset, and fiber height?
Therefore, the end face shape is specified in the technical standard, which includes the radius of curvature ROC, vertex offset, and fiber height.
According to the technical standards of the IEC organization, the reference value of the ROC radius of curvature is that the PC type connector is 10~25mm, and the APC type connector is 5~15mm. Vertex offset refers to the offset between the vertex of the curved surface and the fiber axis. If the vertex offset is too large, the deformation of the end face is enough to cause physical contact between the fibers. Therefore, the technical standard requires the vertex offset of the fiber jumper ≤ 50μm.
Fiber height refers to the height of the fiber end face relative to the ferrule end face. The fiber end face may protrude above the ferrule end face or may be recessed below the ferrule end face. The range of optical fiber height specified in the technical standard is -250~+250nm.
4. Fiber patch cord mechanical performance test
For
example, pull test, test optical patch cord under specified pull force
to verify fiber attenuation and fiber elongation strain safety factor.
5. Fiber patch cord ambient temperature experiment
It is necessary to test the performance indicators of optical fiber connectors under different ambient temperature conditions.
- |
- +1 赞 0
- 收藏
- 评论 0
本文由出山转载自T&S News,原文标题为:Five Tests to Ensure the Fiber Patch Cord Quality,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
相关推荐
What is WDM?
Wavelength Division Multiplexing (WDM) is a technique in fiber optic transmission for using multiple light wavelengths to send data over the same medium. Two or more frequencies of light can travel along one fiber, and multiple signals transmit in an optical waveguide at different wavelengths.
技术探讨 发布时间 : 2023-08-20
Structures and Applications of Fiber Bragg Grating Sensors
A Fiber Bragg grating sensor can be used as a kind of fiber sensor. Like the optical fiber sensor, it has many irreplaceable advantages compared with the traditional electric sensor, such as no electromagnetic interference, lightweight, small size, no corrosion, etc.
技术探讨 发布时间 : 2023-09-19
LC Duplex Fiber Optic Connectors for High Density Environments with the Features of High-reliability, Low-cost And High-density
With the rapid application of 5G, how to provide a high-density, low-cost, easy-to-manage, and high-reliability network cabling system for data centers has become an increasingly important requirement. The LC duplex fiber optic connector is a high-reliability, low-cost, high-density wiring solution.
技术探讨 发布时间 : 2023-12-09
太辰光(T&S)光纤连接器选型指南
目录- 公司简介 Company profile 陶瓷插芯 Ceramic Ferrule 光纤连接器 Fiber Optic Cable Assembly 光纤元器件 Fiber Optic Components 波分复用器 WDM FBT光纤耦合器 FBT Coupler PLC分路器 PLC Splitter 光纤光栅 Fiber Bragg Grating 光纤模块、有源光缆及有源电缆 Fiber Optic Transceivers,AOC&DAC
型号- FOT-SC/APC,CG-XX/G652D/1.5M,D12F-SC/UPC/SM/∅0.9/L/L1M,SMC-P-1X2-163/15-10/90-FC/APC-1-G652D-∅3X60,FEN-SC-S4,FEN-SC-S5,MC-FC/APC-FC/UPC/SM/∅3/L,FEN-SC-S1,PM-FC/UPC(N)-FC/UPC(N)/1550/∅2/L-SA,FEN-SC-S2,FEN-SC-S3,ATIL-FC/APC/SM/05/NP/L,MPO/APC/12F-FC/UPC/SM/∅0.9-L/L1-RJ,PLC-1X8-A-09/L1-LC/UPC-09/L2-LC/UPC
太辰光(T&S)光纤通信产品选型指南
描述- 深圳太辰光通信股份有限公司成立于2000年,于2016年12月在深圳证券交易所创业板上市,证券代码300570,公司的主营业务为各种光通信器件及其集成功能模块的研发、生产和销售。光通信器件主要包括高密度光纤连接器、常规光纤连接器件、PLC光分路器、波分复用器等无源光器件、光模块、有源光缆等有源光器件以及陶瓷插芯、MT插芯,平面光波导晶圆和芯片等基础元器件。
型号- TSSLS-NCNEE3C,400G QSFP-DD TO 4X100G QSFP56 AOC,200G QSFP56 SR4,400G QSFP-DD TO 8X50G SFP56 DAC,TSSLS-NXXCE3T,TSQM4-NAAJB1C,TSQS-PC40G-XXM,TSD4Q-85M-XXXC,TS-RD1,TS-RD1-1U,TSD8S-85M-XXXC,TSQSQ-85G-XXXC,TSQ45-85G-XXXC,TSQM4-NAAJB1T,TS-FD2,TSSLS-NXXCE3C,TS-FD1-1U,TS-FD1,40G QSFP+TO 4X10G SFP+DAC,PD2-6M,TSSLS-NCNEH8C,40G QSFP+ TO 4X10G SFP+ AOC,TSQS-PC56G-XXM,FEN-LH-SMA,TS-FD2 SERIES,56G QSFP+DAC,40G QSFP+ ER4,TSQD-PC4HG-XXM,200G QSFP56 AOC,10G SFP+ ZR,FEN-LH-LC,100G QSFP28 PSM4,TSSLS-CXXEE3C,25G SFP28 SR,TSSLS-NAACBIT,TSSLS-NAAEAIT,TSQDQ-4PC1HG-XXM,100G QSFP28 AOC,TSSLS-NAACB1C,TSSLS-NAAEA1C,FEN-LH-SDL,10G SFP+ DWDM,MD2-1M24L,TSQL4-E11GH7C,TSQSS-PC2HG-XXM,TSQL4-F22JH4C,FES-LC-PA,25G SFP28 DAC,25G SFP28 CWDM,400G QSFP-DD DAC,400G QSFP-DD DR4,TSSLS-NCNCE3C,400G QSFP-DD TO 2X200G QSFP56 DAC,MD1-3M24L,TSSP-PC25G-XXM,TSD2Q-85L-XXXC,200G QSFP56 TO 4X50G SFP56 AOC,56G QSFP+ AOC,TSSP-PC56G-XXM,TSQS-PC2HG-XXM,100G QSFP28 SR4,10G SFP+ LR,TSQM4-NCNJC3C,TSQSS-PC1HG-XXM,TS-RD1 SERIES,TSSSS-85H-XXXC,TSQDQ-2PC2HG-XXM,50G SFP56 AOC,40G QSFP+ DAC,TS-FD1 SERIES,TSQSQ-85H-XXXC,TSQM4-NAALAIC,FEN-SC-FUNNEL-1,PD2-24L,FEN-SC-FUNNEL-2,TSQM4-NAAGB1C,TSQM4-NAAGBIT,TSSSS-85E-XXXC,40G QSFP+ LR4,TSSLS-CXXCE3C,FES-SC-PA,TSQS-PC1HG-XXM,200G QSFP-DD TO 2X100G QSFP28 AOC,100G QSFP28 TO 2X50G QSFP28 AOC,TSSLS-DXXEE4C,10G SFP+ DAC,25G SFP28 BIDI,TSSLS-NCNEE3T,100G QSFP28 LR4,TSQ4S-85L-XXXC,TSQSQ-85L-XXXC,100G QSFP28 DAC,TSDM4-NCNMC3C,25G SFP28 ER,10G SFP+ AOC,10G SFP+ BIDI,400G QSFP-DD TO 8X50G SFP56 AOC,800G QSFP-DD AOC,TSQM4-NCNGC3C,TSDR8-NAAMATC,TS-FD2-2U,10G SFP+ CWDM,10G SFP+SR,FEN-LC-2,25G SFP28 DWDM,TSSSS-85C-XXXC,TSDSD-85N-XXXC,100G QSFP28 TO 4X25G SFP28 AOC,TSQDS-8PC50G-XXM,800G QSFP-DD SR8,10G SFP+ ER,200G QSFP56 DAC,100G SFP-DD AOC,TSSLS-DXXCK8C,TSQ2Q-85J-XXXC,TSSLS-NCNCE3T,TSQSQ-PC2HG-XXM,TSD2Q-85M-XXXC,FEN-LH-SC,TSSLS-NXXEE3T,200G QSFP56 FR4,40G QSFP+ AOC,50G SFP56 DAC,100G QSFP28 TO 4X25G SFP28 DAC,100G QSFP28 ER4,FEN-SC-1,TSDSD-85M-XXXC,400G QSFP-DD FR4,TSDL4-E11MD3C,100G QSFP28 CWDM4,TSSLS-NXXEE3C,25G SFP28 LR,40G QSFP+PSM4,TSQL4-F22JE3C,400G QSFP-DD TO 2X200G QSFP56 AOC,TSTST-85K-XXXC,400G QSFP-DD AOC,TSQSQ-85J-XXXC,TSQ4S-85J-XXXC,TSD85-85L-XXXC,TSQL4-E11JE3C,TSDR8-NAANA1C,TSSLS-NCNCKBC,200G QSFP56 TO 4X50G SFP56 DAC,TSQL4-E11LD3C,400G QSFP-DD TO 4X100G QSFP56 DAC,200G QSFP-DD TO 8X25G SFP28 AOC,TSSLS-NCNCH4C,MD1-2M6M,200G QSFP56 TO 2X100G QSFP56 DAC,25G SFP28 AOC,PD1-24L,TSQL4-E11GE3C,400G QSFP-DD SR8,40G QSFP+SR4,TSQSS-PC40G-XXM,TSSLS-DXXCH4C,TSSP-PC192-XXM
How to Define the Three Value Standards of the End Face of the Patchcord?
The two end faces of the fiber must be precisely butted so that the light energy output by the transmitting fiber can be coupled to the receiving fiber to the maximum extent. The successful connection of optical fiber lines depends on the quality of the physical connection of the optical fibers.
设计经验 发布时间 : 2023-10-07
How to Plan the Future 5G Fiber Network?
Based on T&S Communications’s excellent comprehensive capabilities, T&S Communication is dedicated to bringing fiber optical components with superior performance to next-generation communications in a green, pragmatic, and cost-effective manner.
设计经验 发布时间 : 2023-10-13
电子商城
登录 | 立即注册
提交评论