How to Design A Power Factor Correction (PFC) 400 V Rectifier Using 200 V eGaN® FETs
Acknowledgement - This application note and associated hardware was developed in collaboration with Semiconductor Power Electronics Center (SPEC) at University of Texas at Austin.
Motivation
The expansion of applications such as cloud computing, wearables, machine learning, autonomous driving, and IoT drive us towards an even more data-intensive world, increasing demands on data centers and power consumption [1, 2]. The importance of efficiency, power density, and cost of the AC to DC switching power supply is driving innovative solutions that eGaN FETs can solve to yield ultra-high efficiency power factor correction (PFC) front-end rectifier solutions that are the focus of this how-to-application note.
The 4-level Flying Capacitor Multi-Level (FCML) totem-pole bridgeless PFC converter
The conventional 2-level totem-pole bridgeless PFC topology has been a popular choice to achieve high efficiency using 650 V rated GaN FETs but does not address the power density and loss limitations of the main inductor [3]-[5]. The 4-level flying capacitor multi-level (FCML) totem-pole bridgeless PFC topology is an alternative that can utilize 200 V eGaN FETs, that can operate to the maximum grid line voltage of 274 VACRMS, and make use of the volt-seconds reduction and frequency multiplication for the inductor to significantly increase the power density and yield a high efficiency solution. The power schematic of the FCML-totem-pole bridgeless PFC rectifier is shown in figure 1. An added benefit of the 4-level FCML -totem-pole bridgeless PFC rectifier topology is that due to the low inductance required it minimizes the input current harmonic distortion and can maintain switching even with the highest peak line voltage.
Figure 1. 4-Level flying capacitor multi-level eGaN FET totem-pole PFC rectifier schematic
The 200 V rated EPC2215 for the 4-level FCML totem-pole PFC converter
One of the many benefits of using a multi-level topology is that lower voltage devices can be used. In this 4-level topology, six, cascade connected, high frequency devices (Q1 through Q6) are used in the high frequency leg shown in figure 1. The output DC voltage is set to 400 V so the voltage stress for each of the high frequency devices is only 133 V, plus margin, ensuring that 200 V devices are well suited for this topology. The 200 V rated EPC2215 eGaN FET, with RDS(on) of 8 mΩ shown in figure 2, offers low switching loss, low driving power consumption, and zero reverse recovery compared to traditional silicon devices, enabling a high efficiency solution.
Figure 2. Photo of the bump side of 200 V rated, 8 mΩ, EPC2215
Figure 3 shows a size comparison between the EPC2215 and close match MOSFET equivalent that is 15 times larger and will consume 6.5 times more gate power. In addition, the higher output capacitance will also increase the switching losses for the MOSFET compared to the GaN FET.
Figure 3. Device size comparison between the EPC2215 and closest match MOSFET counterpart, both are rated at 200 V
Experimental validation
A 2.5 kW, 4-level flying capacitor multilevel (FCML) GaN FET totem-pole PFC converter was built and is shown in figure 4 [7]. The experimental unit comprises multiple cards; 1) a mother board with EMI filter, housekeeping power supply and bulk output capacitance, 2) a controller card and, 3) the GaN FET flying capacitor multi-level converter card.
Figure 4. Photo of the (a) complete PFC rectifier and (b) the FCML bridgeless totem pole converter card
Figure 5 shows the measured input AC voltage, the well-controlled inductor current and the multi-level switch-node waveforms when the converter is operating with 240 VACRMS input voltage and delivering 2.5 kW into a 400 VDC load.
Figure 5. Measured waveforms of the inductor current (IL), AC input voltage (VAC), and switch-node voltage (VSW) when delivering 2400 W into the 400 VDC load
The overall power efficiency of the 4-level FCML totem-pole GaN FET PFC is shown in figure 6 up to 2.5 kW with a peak efficiency of 99.25% at 1.4 kW and remains above 99% from 900 W and up.
Figure 6. Power efficiency of 4-level FCML totem-pole GaN FET PFC converter
Conclusion
A high efficiency, high power density, 2.5 kW capable eGaN FET-based 4-level flying capacitor multi-level bridgeless totem-pole rectifier that is suitable for data center applications was presented. The 200 V rated, 8 mΩ, EPC2215 was used in the high frequency leg that resulted in a converter that exceeded 99% efficiency from 900 W through 2.5 kW with a peak of 99.25% at 1.4 kW. The complete converter solution has a power density of 125 W/in3 and includes the EMI filter, bulk output capacitors, controller card, and housekeeping power supply. The advantageous characteristics of eGaN FETs [6] allowed this converter to achieve high power density, ultra-high efficiency, and low harmonic distortion.
- |
- +1 赞 0
- 收藏
- 评论 0
本文由青莲居士转载自EPC,原文标题为:How to Design a Highly Efficient, 2.5 kW, Universal Input Voltage Range, Power Factor Correction (PFC) 400 V Rectifier Using 200 V eGaN® FETs,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
相关推荐
EPC(宜普)eGaN® 氮化镓晶体管(GaN FET)和集成电路及开发板/演示板/评估套件选型指南
目录- eGaN FETs and ICs eGaN® Integrated Circuits Half-Bridge Development Boards DrGaN DC-DC Conversion Lidar/Motor Drive AC/DC Conversion
型号- EPC2212,EPC2214,EPC2059,EPC2216,EPC2215,EPC2218,EPC2016C,EPC2050,EPC2052,EPC2051,EPC2054,EPC2053,EPC2055,EPC9086,EPC2218A,EPC90153,EPC9087,EPC90154,EPC2069,EPC2102,EPC2101,EPC2104,EPC2103,EPC2106,EPC2105,EPC2107,EPC9018,EPC2065,EPC90151,EPC90152,EPC21702,EPC2100,EPC2067,EPC2221,EPC21701,EPC2066,EPC90150,EPC9097,EPC90145,EPC90142,EPC9098,EPC90143,EPC9099,EPC9092,EPC90148,EPC90149,EPC90146,EPC9094,EPC90147,EPC2219,EPC9091,EPC2619,EPC2036,EPC2035,EPC2038,EPC2037,EPC2014C,EPC2039,EPC9507,EPC2030,EPC9067,EPC2032,EPC2031,EPC9068,EPC2152,EPC2033,EPC9063,EPC9186,EPC9066,EPC8010,EPC9180,EPC2204A,EPC9181,EPC9061,EPC2308,EPC2307,EPC9005C,UP1966E,EPC2203,EPC9004C,EPC2202,EPC2204,EPC2015C,EPC2207,EPC2206,EPC2040,EPC2045,EPC2044,EPC9194,EPC2012C,EPC2019,EPC9049,EPC9203,EPC9204,EPC9205,EPC2252,EPC9166,EPC9167,EPC9047,EPC9201,EPC9041,EPC9162,EPC9163,EPC9165,EPC7020,EPC9160,EPC9040,EPC2024,EPC8009,EPC2302,EPC2001C,EPC2029,EPC2304,EPC2306,EPC2305,EPC8002,EPC2021,EPC9177,EPC2020,EPC9057,EPC9167HC,EPC2023,EPC9179,EPC9058,EPC8004,EPC2022,EPC9059,EPC9173,EPC9174,EPC9055,EPC9176,EPC9170,EPC9050,EPC9171,EPC9172,EPC2010C,EPC2034C,EPC7007,EPC7002,EPC9148,EPC2071,EPC7001,EPC23101,EPC23102,EPC23103,EPC9144,EPC90140,EPC23104,EPC2111,EPC7004,EPC2110,EPC7003,EPC90133,EPC90132,EPC9022,EPC9143,EPC90137,EPC90138,EPC90135,EPC90139,EPC7019,EPC7018,EPC9038,EPC9159,EPC9039,EPC2007C,EPC21603,EPC9156,EPC9036,EPC9157,EPC9037,EPC2088,EPC7014,EPC21601,EPC9158,EPC90122,EPC9151,EPC9031,EPC90123,EPC90120,EPC9153,EPC9033,EPC90121,EPC9154,EPC90124,EPC9150,EPC90128
BRC Solar Selects EPC 100V eGaN FETs for Next Generation Solar Optimizer
Designing EPC‘s EPC2218 100V FETs into BRC Solar GmbH‘s next generation M500/14 power optimizer has enabled a higher current density due to the low power dissipation and the small size of the GaN FET making the critical load circuit more compact.
应用方案 发布时间 : 2022-08-26
【应用】eGaN FET EPC2051助力激光雷达发射端高功率纳秒级别脉冲设计
在激光雷达的发射链路中,为实现雷达高分辨率的设计,需产生高功率、纳秒级别的激光脉冲。要达到这样的设计要求,普通MOS不能满足要求,需要采用GaN 搭配高功率Laser器件进行实现。EPC2051是EPC公司生产的氮化镓场效应晶体管(eGaN FET),已经成功的应用在激光雷达上。
应用方案 发布时间 : 2020-04-29
【经验】eGaN FET EPC2016C开发板EPC9126的调试技巧分享
EPC9126是EPC公司推出的针对eGaN FET EPC2016C的demo板,在调试过程中经常会碰到各种问题,本文就调试步骤做一下总结。1、确认5V电源是否正确。2、确认信号发生器PWM信号是否正确,符合要求的应该是5V幅值,占空比为50%的输入信号。3、J8端信号确认,主要是确认开发板U3/U5芯片没有损坏。
设计经验 发布时间 : 2020-02-05
How to Design a 12V-to-60V Boost Converter with Low Temperature Rise Using eGaN FETs
This Talk EPC will examine the design of a 12V to 60V, 50W DC/DC power module with low temperature rise using eGaN FETs in the simple and low-cost synchronous boost topology.
设计经验 发布时间 : 2021-11-01
【应用】如何使用200V eGaN FET设计2.5kW高效FCML图腾柱无桥PFC整流器
本文介绍了一种适用于数据中心应用的高效,高功率密度,2.5kW的基于eGaN FET的飞跨电容4电平图腾柱无桥整流器。采用EPC旗下200V/8mΩ的EPC2215用于高频支路,其转换器在900W至2.5kW的效率超过99%,在1.4kW时的峰值为99.25%。
应用方案 发布时间 : 2020-11-27
eGaN FETs Are Low EMI Solutions!
GaN FETs can switch significantly faster than Si MOSFETs causing many system designers to ask − how does higher switching speeds impact EMI? In this blog, EPC discusses simple mitigation techniques for consideration when designing switching converter systems using eGaN® FETs and will show why GaN FETs generate less EMI than MOSFETs, despite their fast-switching speeds.
新产品 发布时间 : 2020-08-15
【经验】EPC eGaN FET和eGaN IC PCB封装设计指南
一个良好的PCB封装设计对于GaN器件的一致性和可靠性是很重要的。本文是根据数据手册为EPC器件设计正确封装的指导原则——以EPC2016C和EPC2045为例,分别从LGA和BGA封装来完成介绍。
设计经验 发布时间 : 2020-09-23
电子商城
登录 | 立即注册
提交评论