【技术】在与Si MOS/SiC MOS的比较中了解SiC FET导通电阻随温度产生的变化
从数据表比较SiC开关性能可能很困难。 SiC MOSFET似乎具有较低的导通电阻温度系数的优势,但是与UnitedSiC FET相比,这明显存在更高的潜在损耗和整体效率不足。
俗话说“比较是可恶的”,现代电力转换器的设计者们不得不从一系列竞争性的“最佳性能”要求中,冷静地比较电源开关的应用。问题在于如果不考虑其与其他措施之间的权衡,就无法说单个电参数会更好。 导通电阻就是一个很好的例子——用户必须在制造商建议的栅极驱动电压,相同结温和漏极电流以及相同封装的情况下比较具有相同额定电压的零件。
Si MOSFETs, SiC MOSFETs 和 SiC FETS地位竞争
在更高的电压下,从几百伏以上,Si MOSFETs, SiC MOSFETs 和 UnitedSiC FETs正在争夺位置,数据表通常给出特定额定电压、结温和栅极驱动电压下的RDS(ON)值。例如,UnitedSiC最近发布的UJ4C075018K4S零件给出了在20A漏极电流下,VGS=12V和25°C至175°C时的导通电阻值。由此可以很容易地推导出该部件在给定温度下RDS(ON)的温度系数,Tj =125°C时RDS(ON)的温度系数约为+70-75%。
650V SiC MOSFET的拥护者可能会指出,对于其他类似的器件,在Tj=125°C时,他们看到的数值通常是+20-25%。是不是好了三倍?首先,一定的温度系数是必要的,以迫使裸片中的多个单元共享电流而不会出现热点和热失控。 同样,设计人员依靠正值能够使器件具有自然电流共享并联。
SiC MOSFET电阻主要由其反向沟道控制
SiC MOSFET的RDS(ON)较低值的温度系数实际上表明正在发生更深的影响;MOSFET和JFETS是“单载子”器件,电子流经不同区域:衬底,漂移层,JFET区域和沟道等。在650V SiC MOSFET中,反相通道控制着总电阻,而总电阻实际上随温度而降低。沟道电阻与(自由载流子的数量x电子反转层迁移率)成反比,并且随着温度的升高,阈值电压降低,沟道中自由载流子的数量增加,因此电阻减小。其余器件区域的正温度系数(即JFET,漂移层和衬底电阻)抵消了这种影响,从而产生了轻微的净正Tc值。 在SiC JFET中,没有反向通道可以抵消JFET,漂移层和衬底的正温度系数。 同时,低压Si MOSFET仅占总导通电阻的一小部分,这解释了比SiC MOSFET更高的Tc值,但说明的是,与非理想SiC反转层相关的损耗在SiC FET中也不存在(图1)。
图1 典型的SiC MOSFET沟槽结构和UnitedSiC FET显示没有损耗的SiC MOS反向沟道,从而导致较高的导通电阻温度系数,但损耗较低
SiC FET的总传导损耗较低
当查看绝对值时,关键就来了。如图2,比较650/750V器件的RDS(ON),UnitedSiC FET始于25°C,约为SiC MOSFET导通电阻的三分之一,而在150°C时仍高出近2倍,对于相同的有源芯片面积,其导通损耗约为一半。
图2 UnitedSiC FET具有较高的导通电阻Tc,但绝对值较低
最终结果是,使用UnitedSiC FET可以降低总传导损耗,并具有RDS(ON)的正常正温度系数,以确保单元和并联器件之间有效地共享电流。显然有必要确保比较是正确的,并了解其背后的机制——它可以揭示实际重要的方面:降低总体损失。
- |
- +1 赞 0
- 收藏
- 评论 0
本文由Jerry_Wang翻译自UnitedSiC,版权归世强硬创平台所有,非经授权,任何媒体、网站或个人不得转载,授权转载时须注明“来源:世强硬创平台”。
相关推荐
【技术】UnitedSiC第四代SiC FET技术推进电动车设计提高功率密度并降低功耗
在牵引逆变器领域,第四代SiC FET技术将提供非常有吸引力的解决方案来应对成本效益挑战和基于SiC的高可靠牵引逆变器挑战。随着第四代750V SiC FET技术的推出,UnitedSiC为设计师们提供了可以让新设计提高功率密度、降低功耗并提升成本性能指标的器件。
【技术】用SiC FET固态断路器取代机械断路器,解决速度慢、易磨损问题
SiC FET打开了大电流的固态断路器应用的大门,且其损耗只会随着技术进步而降低。并联器件有可能会让最终损耗与机械断路器相当,且成本不一定会成为阻碍因素,因为晶粒会发展,实现给定电阻所需的晶粒会减少。在未来几年,由于电动车销量促使断路器市场膨胀而带来的规模经济效应,SiC晶圆成本必然会减半。
【技术】图腾柱PFC在SiC FET的辅助下日渐成熟,宽带隙开关支持实现可行的解决方案
在宽带隙半导体的辅助下,图腾柱功率因数校正技术日渐成熟,与损耗很低的SiC FET搭配使用后,发挥了全部潜力。本文UnitedSiC解析图腾柱PFC在SiC FET的辅助下日渐成熟。
【经验】SiC FET关断时VDS尖峰和振荡问题的解决方法
UnitedSiC的SiC FET能直接替代Si MOSFET,但其高开关速度也可能会使关断VDS电压产生尖峰和震荡,使系统的EMI变差。关断时的VDS尖峰和振荡产生的根本原因是高速开关过程中di/dt在杂散电感上产生了较高的感应电压。本文将给出并对比几种解决方案。
SiC FET用户指南
型号- UJ3C065080T3S,UJ4C075018K4S,UF4SC120030K4S,UF3C065040T3S,UF3C120080K3S,UJ3C065030K3S,UF3C065040B3,UF3C065080B3,UJ4C075023K3S,UF4SC120053K4S,UJ4SC075009K4S,UJ4C075033K3S,UJ3C065080B3,UJ3C120040K3S,UF3C065030T3S,UF4SC,UF3SC120016K3S,UF3C065080K3S,UJ4SC,UF3C065030K4S,UJ3C065030B3,UF3CXXXYYYK3S,UJ4SC075006K4S,UF3SC065007K4S,UF3C120040K4S,UF3C065030B3,UF3C120400K3S,UJ4CXXXK3S,UF3C120150B7S,UF3C065040K4S,UJ4C075044K3S,UJ3C065030T3S,UJ4C,UJ3C120070K3S,UF3C065030K3S,UF4C,UJ3C120150K3S,UJ4C075060K4S,UF3C065080B7S,UF3C170400B7S,UF4SC120070K4S,UF3CXXXYYYK4S,UF3SC120009K4S,UF3C120080B7S,UF3C065080T3S,UF3C120040K3S,UF3C120150K4S,UF3C065040K3S,UJ3C120080K3S,UJ3C065080K3S,UF3SC,UF3C120080K4S,UJ4C075044K4S,UJ3C,UJ4C075018K3S,UF3C,UF3SC065030B7S,UJ4C075023K4S,UJ4C075060K3S,UJ3CXXXYYYK3S,UF4SC120053K3S,UF4SC120070K3S,UF SERIES,UJ4SC075011K4S,UJ4C075033K4S,UF3C120150K3S,UF3C170400K3S,UF4SC120023K4S,UF3SC120040B7S,UF3SC065040B7S,UF3SC120016K4S,UF3C065080K4S
1200V第4代SiC FET具有业界最佳性能,为高压市场提供最佳SiC电源解决方案
型号- UF4SC120030K4S,UF4C120053K3S,UF4C120030K4S,UF4SC SERIES,UF3C120040K4S,UF4C SERIES,UF4C120070K3S,UF4C,UF4C120070K4S,UF4C120053K4S,UF4SC120023K4S,UF4SC
UnitedSiC FET用户指南
型号- UJ3C065080T3S,UJ4C075018K4S,UF3C065040T3S,UF3C120080K3S,UF3SC065040D8S,UJ3C065030K3S,UF3SC065030D8S,C1808C681JGGAC7800,UF3C065040B3,UF3C065080B3,UJ4C075023K3S,UJ4SC075009K4S,CRCW201010R0JNEFHP,UJ4C075033K3S,UJ3C065080B3,UJ3C120040K3S,UF3C065030T3S,UF3SC120016K3S,UF3C065080K3S,UJ4SC,UF3C065030K4S,CRCW25124R70JNEGHP,UJ3C065030B3,UF3CXXXYYYK3S,UJ4SC075006K4S,C1206C680JGGAC7800,UF3SC065007K4S,UF3C120040K4S,UF3C065030B3,UF3C120400K3S,UJ4CXXXK3S,UF3C120150B7S,UF3C065040K4S,UJ4C075044K3S,C1206C151JGGAC7800,UJ3C065030T3S,UJ4C,UF3C065030K3S,UJ3C120150K3S,UF3C120400B7S,UJ4C075060K4S,CRCW20104R70JNEFHP,UF3C065080B7S,UF3C170400B7S,UF3CXXXYYYK4S,202R18N101JV4E,SR1206FR-7W4R7L,UF3SC120009K4S,UF3C120080B7S,KTR18EZPF10R0,UF3C065080T3S,UF3C120040K3S,UF3C120150K4S,UF3C065040K3S,UJ3C120080K3S,UJ3C065080K3S,UF3SC,KTR18EZPF4R70,UF3C120080K4S,UJ4C075044K4S,CRCW251210R0JNEGHP,UJ3C,UJ4C075018K3S,UF3C,UF3SC065030B7S,C1206C221JGGAC7800,C1210C331JGGACTU,SR1206FR-7W10RL,UJ4C075023K4S,UJ4C075060K3S,UJ3CXXXYYYK3S,UJ4C075033K4S,UJ4SC075011K4S,UF3C120150K3S,UF3C170400K3S,UF3SC120040B7S,UF3SC065040B7S,UF3SC120016K4S,UF3C065080K4S,202R18N470JV4E
SiC FET的起源和发展—与SiC MOS及其他替代技术的性能比较
使用宽带隙半导体作为高频开关为实现更高的功率转换效率提供了有力支持。一个示例是,碳化硅开关可以实施为SiC MOSFET或以共源共栅结构实施为SiC FET。本文追溯了SiC FET的起源和发展,直至最新一代产品,并将其性能与替代技术进行了比较。
具有业界出众性能的1200V第四代SiC FET为高压市场提供优秀SiC功率解决方案
UnitedSiC扩充了1200V产品系列,将突破性的第四代SiC FET技术推广到电压更高的应用中。新UF4C/SC系列中的六款新产品的规格从23毫欧到70毫欧,现以TO247-4L(开尔文连接)封装提供,而1200V的53毫欧和70毫欧SiC FET还以TO247-3L封装提供。
【经验】适用于SiC FET的简单RC缓冲电路,可解决电压过冲和振铃等问题
随着我们的产品接近边沿速率超快的理想半导体开关,电压过冲和振铃开始成为问题。适用于SiC FET的简单RC缓冲电路可以解决这些问题,并带来更高的效率增益。UnitedSiC将在本文中进行详细的分析。
【产品】1200V/80mΩ的SiC FET UF3C120080K3S,最高工作温度175℃
UnitedSiC的SiC FET(碳化硅场效应晶体管)采用了独特的共源共栅(cascode)电路配置,将常开型SiC JFET与Si MOSFET共同封装在一起,从而构建出常关型SiC FET器件。UF3C120080K3S是一款1200V的SiC FET。
UnitedSiC提供1200V第四代SiC FET,具有出色的热能力,可助力找到您的高压功率设计的亮点
UnitedSiC(现名Qorvo)提供了1200V第四代器件,它们具有一系列导通电阻额定值,可满足通常使用800V总线的各种应用的需要。欢迎用新的1200V第四代SiC FET找到您的高压功率设计的亮点。
可直接替换IGBT和Si MOS的第三代SiC FET,提供革命性的功率转换性能
现在已经出现了第三代SiC FET,这是一种Si-MOSFET和SiC JFET的共源共栅布置,处于宽带隙技术的前沿。作为IGBT和Si-MOSFET的直接替代品,SiC FET用于升级电动机驱动、UPS逆变器、焊机、大功率交直流和直流转换器等。
UnitedSiC新推第四代SiC FET UJ4C系列,750V额定电压,具有同类最佳的性能指标
UnitedSiC推出新的第四代UJ4C系列SiC FET具有突破性的性能水平,旨在加速汽车和工业充电、电信整流器、数据中心PFC DC-DC转换以及可再生能源和储能应用中的功率性能提升。
【产品】UnitedSiC推出新的UF4C/SC系列1200V第四代SiC FET 非常适合主流的800V总线结构
UnitedSiC宣布推出新一代1200V碳化硅(SiC)场效应晶体管(FET)系列,这些产品在导通电阻方面具备业界出众的性能表征。新的UF4C/SC系列1200V第四代SiC FET非常适合主流的800V总线结构,这种结构常见于电动车车载充电器、工业电池充电器、工业电源、直流太阳能逆变器、焊机、不间断电源等应用。
现货市场
登录 | 立即注册
提交评论