【技术】一文详解矢量负载牵引技术
由于通信制式越来越复杂,对放大器的线性度和效率要求越来越高。由于放大器的效率和线性度是个永恒的矛盾,所以如何平衡这样的矛盾达到系统设计的最优就是一个需要解决的难题。此时需要通过调节输入和输出端的阻抗,也就是负载牵引(Load-Pull)原理来改善增益压缩点,从而降低谐波的非线性失真,模拟功放的最大输出功率负载点,然后实现高转换效率、高输出功率,高线性功放等目的。
负载牵引方法可以找到让有源器件输出功率最大的输入、输出匹配阻抗。同理也可以得到让功率管效率最高的匹配阻抗。这种方法可以准确地测量出器件在大信号条件下的最优性能,反映出器件输入、输出阻抗随频率和输入功率变化的特性,为器件和电路的设计优化提供了坚实的基础。
什么是负载牵引?
RF功放在大信号工作时,最佳负载阻抗会随着输入信号功率的增加而跟着改变,所以我们必须在史密斯圆图上(Smith chart)上,针对不同的输入功率,每给定一个输入功率,画出在不同负载阻抗时的等输出功率曲线(Power contours),从而帮助我们找出最大输出功率时的最佳负载阻抗,这种方法称为负载牵引(Load-Pull)。
负载牵引系统是改变射频微波器件输入源阻抗和输出负载阻抗的阻抗牵引系统,它可以测量出射频微波器件及功率芯片在不同源阻抗及负载阻抗下的各种工作参数,典型的被测件是功率晶体管、MMIC及放大器。对于功率晶体管器件,可以测量出在最大输出功率、最佳功率附加效率或最佳线性特性下的源端和负载端的最佳阻抗匹配参数,从而优化放大器的设计性能及提高设计效率。
一、标量负载牵引系统
负载牵引系统已经被业界广泛使用30多年,大多数负载牵引系统都是使用两个Tuner配合信号源、功率计、频谱仪、网络分析仪及一些测试附件,其中网络分析仪只是用来完成对Tuner和系统附件(包括夹具)的校准,测量时不再使用网络分析仪,图1所示为典型负载牵引系统架构,这种系统配置仍然被很多客户使用,该系统也被称之为标量负载牵引系统。
测量参数包括:Pin,Pout,Gain,PAE等
主要优势:成本低
图1:典型负载牵引系统架构
二、矢量负载牵引系统
随着高端网络分析仪的普及,当前很多客户是基于VNA矢量接收机外加双定向耦合器及两台Tuner实现矢量负载牵引测量,我们称之为矢量负载牵引系统,同时也称LP-Wave负载牵引系统。
矢量负载牵引系统是基于VNA的一种新颖的测量方法,与传统负载牵引测试系统不同的是在输入Tuner的后面和输出Tuner的前面增加了两个低损耗的双定向耦合器,从而可以测量被测件的入射波、反射波和输出波,通常称之A1、B1、A2和B2(见图2)。基于A1、B1、A2和B2参数,不仅可以非常方便地计算出被测件的ΓS和ΓL、真正的PAE、AM-PM,和扩展为混合型负载牵引系统提高反射系数,而且还可以实现动态负载线、电压电流时域波形的测量及生成非线性大信号模型。
测量参数包括:Pin,Pout,Gain,PAE,Gamma-In/Out of DUT
主要优势:
1.基于VNA的矢量接收机模式,实时测量A1、B1、A2和B2波。可以精确计算出ΓS、ΓL、PAE及AM-PM等参数。
2.测试精度高。第一,高端VNA相对于功率计有非常高的动态范围;第二,高端VNA不仅可以实现对外围所有测试附件的校准工作,并且支持基于失配误差修正的功率校准技术;第三,阻抗的精度不是取决于机械Tuner的校准精度,而是取决于网络仪四个接收机的实时测量精度。
3.维护成本低。简化的测试系统省去了额外的测试仪表,并且使得校准及测试工作异常简单,从而降低系统维护成本。
4.同时支持负载牵引测试和S参数测试。
5.支持升级到时域和混合型负载牵引测试系统。
6.测试速度快。两个原因,一是Focus公司的所有自动化Tuner都是支持iTuner技术,并且每个Tuner内置微处理器及命令语言;二是高端VNA代替了传统负载牵引系统里使用的信号源、功率计、频谱仪等仪表,使得测试系统架构简化。
图2:矢量负载牵引系统架构
VNA不仅可以作为激励信号源,也可以提供四个矢量接收机用来测量A1、B1、A2和B2信号。
图3:矢量负载牵引测量数据
三、混合型负载牵引系统
针对毫米波频段的被测件,大多数都是在片晶圆器件,因此测量需要探针台,不过探针台对于负载牵引测量而言相当于一个测试夹具,没有严格的要求,但是在系统集成及探针台改造是在片系统搭建的一个关键步骤。
通常使用电缆实现探针到阻抗调谐器之间的连接,电缆及探针的差损影响阻抗调谐器在探针尖参考端面的阻抗调谐范围。由于探针和电缆都不是精确的50欧姆阻抗,使得阻抗调谐器调谐范围的中心偏离50欧姆阻抗点,如图4,图中黑色虚线圆为阻抗调谐器自身的阻抗调谐范围,图中红色虚线圆为阻抗调谐器经过电缆到达探针尖的阻抗调谐范围,现实中很多被测件的阻抗点很可能在红色虚线圆与黑色虚线圆之间,因此不能测量到被测件的最佳匹配点。
图4:电缆和探针的差损及驻波对阻抗调谐范围的影响
为了解决在片负载牵引系统阻抗调谐范围不足的问题,通常都是采用混合型负载牵引系统,也就是在机械阻抗牵引的基础上增加有源阻抗牵引功能。如图5给出的混合型负载牵引系统原理框图,除了两个核心的阻抗调谐器外,需要一台高端网络分析仪及两个双定向耦合器。
很多网络分析仪都内置两个信号源及至少四个接收机,使用网络分析仪的第一个信号源作为前向驱动信号,其中四个接收机用来测量入射波、反射波及传输波:A1、B1、A2和B2,ГLOAD=A2/B2,由于输出端阻抗调谐器受探针、电缆及双定向耦合器差损影响使得在其探针尖参考端面的反射系数缩小,也就是ГLOAD不能满足实际测试需求;使用网络分析仪的第二个信号源在输出端反向注入一个信号,同时改变其功率和相位,从而间接改变A2信号的幅度和相位,最终实现的ГLOAD的提高,这就是混合型负载牵引测量的原理。
在混合型负载牵引系统里,机械阻抗调谐器充当预匹配的功能。为了减少对反向注入信号功率的要求,阻抗调谐器始终保持与反向注入信号相位同步。
图5:混合型负载牵引系统原理框图
由于多工器的带宽非常窄,宽带测量需要频繁更换多工器,而且市场上没有成熟的商业化的多工器,使得混合型谐波牵引功能实现起来较困难,因此成熟的混合型谐波负载牵引系统都是在负载端基波上增加有源牵引功能的谐波牵引系统。
四、探针以及探针台
为了探测电路性能,我们需要把信号传导到某类传输线上,这意味着我们需要至少两个导体,即“信号导体”和“地导体”。因此三种探针类型如图:
图6:典型探针类型
除了以上基本的GSG,GS,SG类型的探针,还有各种组合,如GSGSG,GSSG,SGS等等。探针本身需要很好的匹配内部不同传输媒介的特征阻抗,要求保证在不同传输模式下电磁能量的高效传输。
而探针台可以固定晶圆或芯片,并精确定位待测物。手动探针台的使用者将探针臂和探针安装到操纵器中,并使用显微镜将探针尖端放置到待测物上的正确位置。一旦所有探针尖端都被设置在正确的位置,就可以对待测物进行测试。
综上所述,要实现负载牵引系统需要以下配置
负载牵引系统配置:
SP800P系列矢量网络分析仪是普尚最高性能的综合微波测试仪表,具有2或4端口,并可通过多端口扩展设备进行端口扩展,当SP800P系列配置选件222、224或4xx时,仪器内置第二源,在混合型负载牵引系统中满足实际测试需求。如有更多技术咨询,欢迎联系我们,普尚期待与您的交流!
- |
- +1 赞 0
- 收藏
- 评论 0
本文由银河系转载自普尚,原文标题为:详解矢量负载牵引技术,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
相关推荐
普尚云课堂 | 矢网误差分析之系统误差及其测量
系统误差是由于矢网硬件特性的不理想引起的,这种误差是可重复的(因此可以预测),并假设不随时间改变。通过校准可以确定系统误差,测量时通过数学计算来消除这些误差。
1~40GHz弓形法材料发射率测量介绍
由于不同的吸波材料对入射波的反射在不同频段、不同极化方式、不同入射角的情况下是不同的,为了衡量吸波材料的吸波特性,适应高损耗微波电磁材料的研究、开发和应用需求,采用弓形法,在1~40GHz的频带范围内,对材料进行常温反射率的测试。
矢网误差分析之系统误差及其测量
系统误差是由于矢网硬件特性的不理想引起的,这种误差是可重复的(因此可以预测),并假设不随时间改变。通过校准可以确定系统误差,测量时通过数学计算来消除这些误差。本文普尚详细介绍了系统误差及其测量,并给出了基于普尚SP800P系列矢量网络分析仪的测试结果。
【经验】5分钟学会如何利用网分仪测试S参数
普尚SP800系列矢量网络分析仪可用于芯片、组件等多参数(S参数、增益压缩点、噪声系数、互调失真参数等) 一体化综合测试,其中S参数与平衡测量是相当常见的应用场景。本文中普尚将为大家讲解如何利用网分仪测试S参数。
普尚电子领跑高端测量仪表国产化,致力于无线通信和射频微波领域提供高性价比测试解决方案
普尚电子科技有限公司创立于2003年,是一家专注于无线通信和射频微波领域,自主研发、生产和销售通讯仪器仪表的高新技术企业;着眼于两个聚焦领域,即通信电子产品测试,微波/射频产品测试,打造三个产品线,即频谱与信号分析仪,信号(源)发生器,和矢量网络分析仪。
普尚电子SP900H系列手持微波分析仪,超高性能灵活随行
普尚SP900H系列手持微波分析仪,高密封性手持形式,性能指标匹敌台式仪器;独创网络优化测试功能,集合频谱分析仪、矢量网络分析仪、 天线和电缆分析仪、GPS定位等多功能与一体,让现场测试简单灵活。
高端测量仪表国产替代领导者普尚(PROSUND)与世强硬创达成战略合作
普尚(PROSUND)依托世强硬创平台为用户提供旗下射频微波类测试仪表以及射频微波类测试系统等产品及服务。
普尚(PROSUND)矢量网络分析仪选型指南
SP800系列矢量网络分析仪选型指南 SP800系列矢量网络分析仪主要技术指标 订购信息与服务
普尚 - 测试集控制器,同轴频率扩展器,四端口矢量网络分析仪,柔性线缆,N型SOLT校准套件,机械校准件,射频柔性连接线,N型电子校准件,SOLT校准套件,矢量网络分析仪,电子校准件,双端口矢量网络分析仪,SP8038P,SP8026P,E80070,SP80395P,A1050-2320,SP8030P,SP8014P,SP800,SP8002P,SP826P,SP800系列,SP826P-205,SP826P-201,SP8042B,SP8014B,SP8002B,SP850P-401,SP8027P,SP8015P,SP867P-425,SP867P-029,SP867P-423,SP80095P,SP80394P,SP8043P,80070S,SP8003P,SP826P-219,80067S,SP80205P,SP826P-217,SP800B-220,SP867P-419,SP8043B,SP8027B,SP8015B,SP8003B,E80067,50061MM,SP850P-417,SP8002A01,E80050,SP8008P,SP820B,SP850P-419,SP8036P,SP8012P,SP800B-015,SP8008B,SP800B-014,SP800B-013,SP800B-012,SP800B-011,SP800B-010,SP826P-224,SP800B-250,SP826P-222,SP850P-423,SP850P-422,SP8037P,SP8041B,SP850P-425,SP850P-029,SP867P-401,SP80097P,SP800B-009,SP8025P,SP800B-008,SP8013P,SP8001P,SP800B-004,SP800P-010,SP80207P,SP809B-409,SP867P,SP8001B,SP800P-015,SP809B-002,SP800P-016,SP800P-017,SP800P-018,SP800P-011,SP800P-012,SP809B-003,SP800P-013,SP809B-004,SP8001A,SP8013B,SP800P-014,SP8018P,SP8006P,SP80092P,67061MM,SP8046P,SP80202P,SP8034P,SP850B,SP8018B,SP826P-401,SP850P,E80035,SP867P-224,SP8007P,SP850P-201,35061MM,SP850P-205,SP8019P,A1026-2327,80050S,SP8035P,SP826P-417,SP800B-422,SP8019B,SP800B-420,80035S,SP867P-219,SP8003A01,SP8028P,SP8016P,SP8004P,SP850P-219,SP850P-217,SP826P-419,SP8044P,SP8016A,SP800B-452,SP826P-425,SP800B-450,SP826P-422,SP826P-029,SP826P-423,SP8020B,SP8016B,SP850P-222,SP809B,SP8004B,SP8029P,SP867P-201,SP8017P,SP850P-224,SP8005P,SP867P-205,SP80392P,SP8021P,SP8045P,SP8029B,SP809B-209,SP8005B,通用射频元器件测试,混频器标量测试,微波元器件测试,无源器件,滤波器,自动夹具移除测试,无源测量应用,材料测试,信号完整性测试,有源器件,大功率射频元器件测试,有源测量应用,天线,半导体芯片测试,变频器标量测试,电缆,-通用射频元器件测试
普尚电子型号对照表
该资料详细列出了普尚PROSUND品牌的多款测试和测量设备,包括矢量网络分析仪、测试选件、可配置测试仪、信号分析仪、噪声系数分析仪和信号发生器。产品覆盖了从9kHz到50GHz的不同频率范围,具有不同的端口配置和功能,如Bias tee、源衰减器、接收机衰减器等。资料中还包括了与是德keysight、罗德与施瓦茨R&S和中电科思仪等品牌产品的对比信息。
普尚 - 四端口矢量网络分析仪,信号发生器,信号分析仪,噪声系数分析仪,高性能信号分析仪,双端口矢量网络分析仪,3674E-405,3674E-404,3986E,3986F,N5245B-401,N5242B-222,SMCV-106,1435B-V,N5242B-219,ZNA67,N5242B-217,3674E-401,N9030B-513,3674E-400,3674E-403,N5247B-423,3674L-405,SP850P-401,N5247B-425,3674L-400,3674L-401,3674L-403,3674L-404,N5242B-224,3986A,SP900N-503,N5247B-419,N9030B-526,ZNB8,SP850P-417,N9020B-526,SP850P-419,N5242B-201,SMCV100B,ZVB8,SMB100B,SP850P-2,SMB100A,SMBB-106,N5247B-401,SP200L-506,SP850P-423,SP850P-422,SP850P-4,SP850P-425,3656D,SP867P-4,SP867P-2,N5242B-205,SP900P-550,SP809B-409,N9030B-503,FSV3013,N5245B-201,N9030B-550,3656B,SP200L,SP826P-401,3674E-203,3674E-205,3674E-204,3674E-201,3674E-200,FSV3004,SP900P-526,1465D,1465B,1465F,SP826P-417,SP800B-422,N5245B-425,SP800B-420,N5181B-506,N8975B,SP826P-4,SP826P-2,N5245B-423,FSW13,SP826P-419,N5245B-422,3674H-400,3674H-401,N5245B-417,SP900B-503,3674H-403,3674H-404,3674H-405,SP800B-452,SP826P-425,SP800B-450,SP826P-422,N5245B-419,SP826P-423,N5171B-506,SP206V-506,N9020B-550,FSW26,E5080B-4K2,SP900P-513,E5080B-4K0,FSV3050,SP900B-526,SP826P-205,SP826P-201,SP900P-503,SP206VL-506,3674H,SP867P-425,SP867P-423,3674B,SMBV100B,3674D,3674G,SP826P-219,SP900B-513,E5080A-495,SP826P-217,SP800B-220,SP867P-419,FSW50,SP200-506,N5245B-222,FSV3030,3674H-200,3674H-201,N5245B-224,N5245B-219,3674H-204,3674H-205,N5245B-217,ZNB20,SP826P-224,E5080B-4P2,SP800B-250,SP826P-222,E5080B-4P0,SP206V,N8976B,N5183B-540,SP867P-401,SMBV-106,3672B,3672C,N5172B-506,3672D,E5080B-2K0,3671E,3671F,3671G,N9020B-503,N5182B-506,ZNA26,SMB-140,3671B,3671D,N5242B-417,ZNB43,SP200L-520,N5242B-419,N5183B-520,SP850P-201,N5247B-224,3674L-200,SP900B-550,3674L-201,3674L-204,3674L-205,N5242B-425,N5242B-423,N5242B-422,E5080A-295,4052C,N5173B-540,4052A,4052H,SP200-520,N5247B-219,4052E,SP900N-540,4051H,E5080B-2P0,SP850P-219,SP850P-217,SMB-120,1435D,1435B,4051C,4051A,SP850P-222,4051E,SP200L-540,SP867P-201,SP850P-224,N5247B-201,1435F,ZNA50,N5242B-401,1465B-V,SP809B-209,SP900N-526,N5173B-520,FSVA3003,SP200-540
普尚电子SP800系列矢量网络分析仪拥有最高70GHz的测试频率,单次连接即可完成多项测试任务
本文为普尚电子分别从优势、通用型号、最高测量参数、交付周期等方面介绍SP800系列矢量网络分析仪。
普尚(PROSUND)信号分析仪选型指南
SP900系列信号分析仪选型比较表 SP900系列信号分析仪主要技术指标 订购信息
普尚 - 步进衰减器,内置功率计,功率测量套件,扩频器,信号分析仪,前置放大器,手持分析仪,频谱分析仪,噪声系数分析仪,直流偏置可变电压源,VVM,数字处理器,超高性能信号分析仪,噪声系数放大器,RTSA,I/Q分析仪,IQA,实时频谱分析仪,知量电压表,电子衰减器,高性能信号分析仪,显示屏,电缆和天线分析仪,伊卡,SP956EM0E,SP900-370,SP900P 970X,SP900-011,SP900-010,SP900-R40,SP900-371,SP900S系列,SP900-004,SP900-003,SP900B-526,SP900-002,SP900-001,SP900-008,SP980EM0E,SP900S-550,SP900-007,SP900-005,SP940N-540,SP972EM0E,SP900P-503,SP900-009,SP1000,SP900-B40,SP902P550,SP900-B2X,SP992EM0E,SP962EM0E,SP900-361,SP950B,SP900-360,SP900B-513,SP900-235,SP900-356,SP902P-526,SP900-355,SP903N-503,SP900-233,SP900-353,SP900-238,SP900-358,SP900-236,SP950S,SP900H-010,SP950P,SP913B,SP900B系列,SP900-EXW,SP900-BBA,SP900-P5L,SP969EM0E,SP954EM1E,SP900P-970T,SP900-B1X,SP900H-526,SP900-R20,SP900-352,SP900P-970W,SP900N系列,SP900-351,SP900-350,SP900P-970U,SP900P-970V,SP900-R10,SP900-107,SP913P,SP900-R15,SP941EM0E,SP999A-D24,SP900-EXM,SP976EM0E,SP900B,SP900-B10,SP900-EP3,SP967EM0E,SP954EM0E,SP900H,SP984EM0E,SP900-P50,SP900-EP5,SP900-220,SP971EM0E,SP900H-518,SP900P,SP900-212,SP940N,SP900P-550,SP900-211,SP900P-970Y,SP982EM0E,SP900S,SP900-210,SP900P-970Z,SP900N,SP900-215,SP973EMXE,SP981EM0E,SP903B,SP980EM4E,SP900H-509,SP900系列,SP902P系列,SP900-330,SP900H-506,SP973EM0E,SP963EM0E,SP900-320,SP900P-3101A,SP955EM0E,SP903P,SP971EMXE,SP900-209,SP902P-550,SP900-208,SP900P-526,SP926B,SP900B-550,SP926N-526,SP926N,SP980EM3E,SP926H,SP900-P26,SP900-312,SP900-036,SP900-035,SP900-310,SP900-034,SP926P,SP902P,SP926S,SP991EM0E,SP950H-B,SP961EM0E,SP950H-A,SP900-EDC,SP900P-227F,SP900-B5X,SP900,SP977EM0E,SP900H系列,SP900P-227C,SP900S-526,SP900-033,SP900-032,SP900P-227A,SP900-031,SP900-030,SP900-026,SP900B-503,SP900-P13,SP900-024,SP900P系列,SP900-023,SP900-305,SP900-029,SP900-028,SP900-027,SP900-302,SP968EM0E,SP900-309,SP900-308,SP900-307,SP985EM0E,SP900-EMPSMB,SP900H-554,SP977EM1E,SP900-022,SP900-021,SP900-020,SP900-141,SP900-015,SP900-378,SP900-P03,SP900-014,SP900-377,SP900-013,SP900-012,SP900-019,SP979EM0E,SP900-018,SP900-017,SP900-016,SP902P526,SP900H-030,SP900P-513,SP900H-550,SP983EM0E
为什么无源器件的插损S21会出现正值?
对于小插损器件测量时出现的增益或者正值,这是由于测量误差导致的,矢量网络分析仪的系统误差主要分为方向性、源匹配、负载匹配、串扰、传输跟踪和反射跟踪,而每种误差又包括正向和反向两种。本文的重点就是介绍一下矢网的系统误差以及误差的来源。
普尚电子携信号/波形/脉冲发生器、矢量网络分析仪、信号与频谱分析仪等亮相EDICON跨越中国2023成都会议
EDICON跨越中国2023-成都会议将于11月17日在成都希顿国际酒店举行。议题涉及5G、6G、卫星、雷达、测试测量、人工智能应用、射频设计、毫米波、基站、天线、MIMO、Open RAN、先进射频器件和芯片、电磁软件等。业内领先公司在会上展示或演示最新产品,普尚电子携多项产品亮相,包括信号/波形/脉冲发生器、矢量网络分析仪、信号与频谱分析仪等。
矢网系统误差分析之为什么无源器件的插损S21会出现正值
所有的测量(包括矢量网络分析仪测试系统)都包含三类测量误差:系统误差、随机误差、漂移误差。大多数误差来源于系统误差,系统误差是由测试设备和测试装置的不完善所引起的。若这些误差不随时间变化,则它们可以通过校准来表征,且可以在测量过程中用数学处理方式予以消除。
电子商城
服务
支持GSM / GPRS 等多种制式产品的射频测试,覆盖所有上行和下行的各项射频指标,包括频差、相差、调制、功率、功控、包络、邻道泄漏比、频谱、杂散、灵敏度、同道干扰、邻道干扰、互调、阻塞等等。满足CE / FCC / IC / TELEC等主流认证的射频测试需求。
实验室地址: 深圳 提交需求>
提供是德(Keysight),罗德(R&S)测试测量仪器租赁服务,包括网络分析仪、无线通讯综测仪、信号发生器、频谱分析仪、信号分析仪、电源等仪器租赁服务;租赁费用按月计算,租赁价格按仪器配置而定。
提交需求>
登录 | 立即注册
提交评论