天线的性能参数有哪些?是德科技信号源和频谱仪提供简易测试天线增益差距的方法

2023-08-07 是德科技 Keysight Technologies知乎
频谱仪,信号源,网络分析仪,矢量网络分析仪 频谱仪,信号源,网络分析仪,矢量网络分析仪 频谱仪,信号源,网络分析仪,矢量网络分析仪 频谱仪,信号源,网络分析仪,矢量网络分析仪

天线是任何无线通信系统的必需组成部分。天线的功能就是定向辐射或接收无线电波信号。发射状态下传输线中的高频电磁能转成为自由空间的电磁波,接收状态下将自由空间中的电磁波转化为传输线中的高频电磁能。


无线电波是一种能量传输形式,在传播过程中,电场和磁场在空间是相互垂直的,同时这两者又都垂直于传播方向。



电子系统对天线的功能有如下要求

1:能量转换功能,天线需要高效地将馈线系统传播的导波能量转换为电磁波能量。
2:方向性器件,发射天线能将能量定向地辐射到设定方向,接收天线只接收机设定方向的无线电波。
3:天线是极化器件,应能发射或接收规定极化的电磁波。
4:天线是馈线系统的负载,需要和馈线系统进行很好的阻抗匹配。
5:天线需要满足电子系统工作频段的要求。

天线的测试性能指标也包含这些方面的要求。


天线的性能参数

Radiation Patten—辐射方向图。 通常指天线的远场辐射特性( θ,φ)

Directivity —方向性(θ,φ)。描述天线在某特定方向相对于全向辐射状态的辐射功率强度,通常也指最大值

Gain—增益。增益与方向性有密切关系,但其同时将天线损耗等因素考虑在内。

Polarization—极化方式。描述天线工作方式

Efficiency—效率。包括:天线辐射效率:考虑天线损耗。天线效率:整体考虑,包括天线的导体、介质损耗等

Effective Isotopically Radiated Power (EIRP) —前向辐射功率

。EIRP = TX power + antenna gain – cable loss

Input Impedance and VSWR —输入阻抗、驻波。描述天线匹配状况、工作特性

下面是德科技将为您详细介绍天线的性能参数我们将介绍天线的主要参数,包括电路参数和空间辐射场参数。介绍天线辐射远场和近场的划分方法,以及典型的天线测试系统配置。


天线方向图

天线方向图可用来说明天线在空间各个方向上所具有的发射或接收电磁波的能力。天线的辐射功率在某些方向大,有些方向小。天线的方向性是指天线向一定方向辐射电磁波的能力。对于接收天线而言,方向性表示天线对不同方向传来的电波所具有的接收能力。天线的方向性的特性曲线通常用方向图来表示。


什么是天线方向图?

天线方向图指在离天线一定距离处,辐射场的相对场强即归一化场强的大小随方向变化的曲线图。

一般是三维的立体方向图。但通常情况下,均采用通过天线最大辐射方向上的两个相互垂直的平面即所谓“主平面”来表示。 在超高频天线中,通常采用与场矢量相平行的两个主平面,即 E平面:所谓E平面就是电场矢量所在的平面。

H平面: 所谓H平面就是磁场矢量所在的平面。

天线平面方向图

球坐标系

立体方向图

半波对称振子天线的方向图

对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。

电基本振子立体方向图


什么是对称振子?

两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子。

对称振子

另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半波折合振子。


垂直放置的半波对称振子具有平放的 “面包圈” 形的立体方向图。在它的两个主平面方向图,平面方向图描述天线在某指定平面上的方向性。从图中 可以看出,在振子的轴线方向上辐射为零,最大辐射方向在水平面上,在水平面上各个方向上的辐射一样大。

沿z轴放置的电基本振子的E平面和H平面方向图

什么是天线主瓣宽度/天线波束宽度?

天线方向图通常有一个主要最大值和若干个次要最大值。头两个零值之间的最大辐射区域是主瓣,其它次要的最大值区域都是旁瓣。

在方向图中通常都有两个瓣或多个瓣,其中最大的瓣称为主瓣,其余的瓣称为副瓣。主瓣两半功率点间的夹角定义为天线方向图的波瓣宽度。称为半功率(角)瓣宽。


主瓣宽度:在主瓣最大辐射方向两侧,辐射强度降低 3 dB(功率密度降低一半)的两点间的夹角定义为波瓣宽度(又称波束宽度  或 主瓣宽度 或 半功率角)。波瓣宽度越窄,方向性越好,作用距离越远,抗干扰能力越强。 还有一种波瓣宽度,即 10dB波瓣宽度,顾名思义它是方向图中辐射强度降低 10dB (功率密度降至十分之一) 的两个点间的夹角。


旁瓣电平(side lobe level):指离主瓣最近且电平最高的第一旁瓣电平,一般以分贝表示。主瓣瓣宽越窄,则方向性越好,抗干扰能力越强。


什么是天线前后比(front-to-back ratio)?

前后比(front-to-back ratio):是指最大辐射方向(前向)电平与其相反方向(后向)电平之比,通常以分贝数表示。方向图中,前后瓣最大电平之比称为前后比。它大,天线定向接收性能就好。基本半波振子天线的前后比为1,所以对来自振子前后的相同信号电波具有相同的接收能力。

天线阻抗和天线工作工作频率范围

什么是天线输入阻抗?

天线输入端信号电压与信号电流之比,称为天线的输入阻抗。

输入阻抗具有电阻分量 Rin 和电抗分量 Xin ,即 Zin = Rin + j Xin 。电抗分量的存在会减少天线从馈线对信号功率的提取,因此,必须使电抗分量尽可能为零,也就是应尽可能使天线的输入阻抗为纯电阻。事实上,即使是设计、调试得很好的天线,其输入阻抗中总还含有一个小的电抗分量值。


输入阻抗与天线的结构、尺寸以及工作波长有关,半波对称振子是最重要的基本天线 ,其输入阻抗为 Zin = 73.1+j42.5 Ω 。当把其长度缩短(3~5)%时,就可以消除其中的电抗分量,使天线的输入阻抗为纯电阻,此时的输入阻抗为 Zin = 73.1 Ω,(标称 75 欧) 。注意,严格的说,纯电阻性的天线输入阻抗只是对点频而言的。


顺便指出,半波折合振子的输入阻抗为半波对称振子的四倍,即Zin = 280 Ω,(标称300欧)。有趣的是,对于任一天线,人们总可通过天线阻抗调试,在要求的工作频率范围内,使输入阻抗的虚部很小且实部相当接近 50 欧,从而使得天线的输入阻抗为Zin = Rin = 50 Ω------这是天线能与馈线处于良好的阻抗匹配所必须的。

从能量传输的角度看,天线是馈线系统的终端负载。当馈线和天线匹配时,高频能量全部被负载吸收,馈线上只有入射波,没有反射波。馈线上传输的是行波,馈线上各处的电压幅度相等,馈线上任意一点的阻抗都等于它的特性阻抗。


而当天线和馈线不匹配时,也就是天线阻抗不等于馈线特性阻抗时,负载就不能全部将馈线上传输的高频能量吸收,而只能吸收部分能量。入射波的一部分能量反射回来形成反射波。


天线的方向特性,极化特性,阻抗特性及效率等参数都和频率有关。无论是发射天线还是接收天线,它们总是在一定的频率范围(频带宽度)内工作的,天线的频带宽度有两种不同的定义:

方式1:在驻波比SWR ≤ 1.5 条件下,天线的工作频带宽度;

方式2:天线增益下降 3 分贝范围内的频带宽度。

在移动通信系统中,通常是按前一种定义的,具体的说,天线的频带宽度就是天线的驻波比SWR 不超过 1.5 时,天线的工作频率范围。

天线极化

天线辐射的电磁场的电场方向就是天线的极化方向。

无线电波在空间传播时,其电场方向是按一定的规律而变化的,这种现象称为无线电波的极化。无线电波的电场方向称为电波的极化方向。如果电波的电场方向垂直于地面,我们就称它为垂直极化波。如果电波的电场方向与地面平行,则称它为水平极化波。


如果电波在传播过程中电场的方向是旋转的,就叫作椭圆极化波。旋转过程中,如果电场的幅度,即大小保持不变,我们就叫它为圆极化波。向传播方向看去顺时针方向旋转的叫右旋圆极化波,反时针方向旋转的叫做左旋圆极化波。


垂直极化波要用具有垂直极化特性的天线来接收;水平极化波要用具有水平极化特性的天线来接收。


天线极化隔离

垂直极化波要用具有垂直极化特性的天线来接收,水平极化波要用具有水平极化特性的天线来接收。右旋圆极化波要用具有右旋圆极化特性的天线来接收,而左旋圆极化波要用具有左旋圆极化特性的天线来接收。


当来波的极化方向与接收天线的极化方向不一致时,接收到的信号都会变小,也就是说,发生极化损失。例如:当用+ 45° 极化天线接收垂直极化或水平极化波时,或者,当用垂直极化天线接收 +45° 极化或 -45°极化波时,等等情况下,都要产生极化损失。用圆极化天线接收任一线极化波,或者,用线极化天线接收任一圆极化波,等等情况下,也必然发生极化损失--只能接收到来波的一半能量。隔离代表馈送到一种极化的信号在另外一种极化中出现的比例。

什么是天线完全极化隔离?

当接收天线的极化方向与来波的极化方向完全正交时,例如用水平极化的接收天线接收垂直极化的来波,或用右旋圆极化的接收天线接收左旋圆极化的来波时,天线就完全接收不到来波的能量,这种情况下极化损失为最大,称极化完全隔离。


天线远场和近场划分

对于天线辐射场的分布,可以将天线振子的场分为分为近区场,远区辐射场和中间区。

从发射天线发射出来的球面波经过一定距离的传播后到达待测天线,当待测天线接收平面上,最大相位差不超过22.5°,则可认为待测天线接收到的是近似平面波。近似到距离就是不小于 2D2/ƛ (D=天线最大尺寸,ƛ = 波长)。


OTA射频测试

OTA射频测试的方法主要有直接远场法、间接远场法、近场测试方法等。

1  直接远场法( Direct Far Field, DFF)

天线特性通常在远场测量。近场区和远场区由 Fraunhofer距离

定义,其中 D 是最大辐射区域口径尺寸。远场测试在整机测试下对测试环境有较高要求。举个例子,一个尺寸为 5cm(Category 1)工作在 28 GHz的天线模块所需的远场测试距离为 0.47m。当一个尺寸为 15cm(Category 3)工作在 28 GHz的智能手机作为待测件时,远场测试距离为 4.2m。图 1 是一种常见的终端直接远场测试方法。

图1  UE 的直接远场测量测量设置

图 1 UE的直接远场测量测量设置,终端天线布局可以分为 3个 Category。根据天线布局,表1 给出针对三种不同情况下的终端设备,推荐采取的测试手段。

表1 三种终端天线布局下推荐测试手段

换言之,针对类别 1 和类别 2,设备供应商或制造商需要提供天线的确切位置,以便于进行天线的整体性能测试和整机辐射性能测试,例如波束赋形的水平。实际上,天线的确切位置对于设计和调试而言同样十分关键。不过,对于类别 3 而言,关注更多的是设备的整机性能。在这种情况下,天线的位置可以不必确切知道,测试时整个设备将会作为 “黑盒 ”处理,但测试静区要大于 15cm。不同频率不同天线口径下根据远场条件计算得到的远场距离和路径损耗在表 2 中给出。


表2 不同频率不同天线口径下的远场距离和路径损耗情况表

从表 2中可以看到,在天线口径 D=5cm,频率 f=28GHz时,远场距离为 47cm,路径损耗值为 54.8 dB。随着天线口径的增加,远场距离迅速增加,这将增加远场暗室的尺寸和成本。同时,路径损耗也在相应增加。比如表中给出的在频率 f=100 GHz、远场为 167 cm下的路径损耗为 76.9 dB。远场距离的增加导致路径损耗的增加,这对测试系统的动态范围提出更高的要求。


2 间接远场法 (Indirect Far Field, IDFF)
间接远场的基本设想是在短距离内,在指定的静区范围采用物理方法建立远场条件。紧凑型天线测试范围( CATR)或紧缩场测试范围使用反射器将球面波转换成平面波,反之亦然。由于静区大小取决于反射器特性而不是远场测试距离,因此只要选择合适的反射面,就能够建立一个比远场更紧凑的测试环境。

(1)紧凑型天线测试范围( CATR)通过抛物反射面的方法创造出远场条件的测试方式叫做紧凑型天线测试(CATR)或紧缩场测试。

紧缩场测试方式如图 2 所示。为了在测试静区得到想要的平面波,紧缩场法通过反射器将球面波变换到平面波。这种间接测试方法是基于光学变换原理并且是互易的,也就是说设备的收发测试均可以通过这种方式进行。这种方法已经被 3GPP采纳,作为有源天线系统(Active Antenna System, AAS)基站侧( Base Station, BS)的射频测量和 5G 终端射频测量的标准测试方法 [6]。紧缩场解决方案可以针对 FR2 中的所有频段。

图2   UE 端射频测量的紧缩场测试方案

这种测量方法的关键组成部分包括反射器、转台、测量探针天线和链路通信天线。


反射面的设计是紧缩场测量方法的关键,要采取合适的手段将边角的绕射效应降到最低。两种常用的手段是:锯齿状边角设计和卷边边角设计。采用锯齿状边角设计的抛物面,使得电磁场在抛物面反射器和自由空间中平滑过渡,从而减小了抛物面的边缘绕射,绕射波也将远离测量静区。锯齿长度视最低频率而定,典型值为 5倍于最低频率波长。卷边边角是将抛物面的边缘向后弯曲,这种结构上的光滑过度会降低抛物面反射器的边缘绕射。


转台系统可以调整标准双极化天线与待测设备之间的角度。转台系统必须可以有两维的旋转自由度。在紧缩场测试系统中,转台和待测设备一样,是放在测试静区内。静区内的电磁场变化较小,其范围大小决定了可以测量的设备的最大尺寸。静区的大小是由抛物面反射器的大小决定的。


馈源测试天线放在暗室的合适区域给抛物面反射器馈电。电磁波从馈源天线发出,经过反射面反射到测试静区,供给待测设备系统接收测试。相反,馈源接收待测设备系统发射,经过反射面反射的信号,完成发射测试。


紧缩场间接远场测试的优点是可以缩短远场距离,减小了路径损耗,同时又能形成远场情况下的平面波条件。上文曾提到过,设备的动态范围是 OTA测试的关键,尤其针对毫米波 系统的测试。大的传输损耗将会给设备的动态范围提出更高要求和挑战,采用紧缩场测试可以减小路径损耗,从而相较于直接远场法获得更大的动态范围。


(2) 平面波变换测试方法(PWC)

一维/二维PWC 短距暗室测量方法如图3 所示。它和紧缩场暗室测试方法十分类似。但不同的是,紧缩场暗室方法是通过馈源和反射面在测量静区形成的平面波,这里是采用特殊的一维探针天线产生平面波。这样的好处是既缩减了测试距离,同时又避免了紧缩场方案中抛物面反射器的设计难度。

图3 一维PWC 短距暗室系统测试设备EIRP 指标

探针系统是采用一维/二维天线阵列,阵列一端连接到矢量网络分析仪。通过优化发射单元的幅度和相位,在接收端形成垂直极化的平面波测试静区。由于无需进行近/远场的二次变换过程,这种测试方法不需要待测设备全部的俯仰角和方位角的场值信息。


3 近场( Near Field,NF)
替代远场测试的另一种手段是采用近场测量,并通过近-远场数学变换( NF-FF)的方法将近场数据变换到远场。这样,对测试场地的需求将大幅减小,同时,采用近-远场变换仍能保证和远场直接测量准确度相当的测试结果。


天线系统的辐射场区可以划分为三部分:感应场区、辐射近场区和辐射远场区 ,如图 12所示。同远场区相比,辐射近场区与远场区有相同的电磁场辐射模式,所以用近场测得的数据确定远场量是可行的。为了减小待测天线系统与测试探针天线之间的耦合,近场测量均是辐射近场区域进行而不是感应场区。近场测量需要对待测系统的闭合辐射面(球面、球柱面、立方柱面)进行幅度和相位的空间采样测量,为的是利用这些数据进行傅里叶变换。

示波器的傅里叶变换功能

近场测量方式通常借助于矢量网络分析仪系统进行。矢网一端接待测设备,另一端接标准测试探针天线。对于5G 毫米波终端设备,通常情况下是没有办法将矢网一端口与天线端口相连接,在这种情形下,必须想办法提取出设备辐射口径面上的场值幅度/相位信息,才能进一步做近-远场变换。


近场测量需要对待测系统的闭合辐射面(球面、球柱面、立方柱面)进行幅度和相位的空间采样测量,为的是利用这些数据进行傅里叶变换。

近场测量方式通常借助于矢量网络分析仪系统进行。矢网一端接待测设备,另一端接标准测试探针天线。对于5G 毫米波终端设备,通常情况下是没有办法将矢网一端口与天线端口相连接,在这种情形下,必须想办法提取出设备辐射口径面上的场值幅度/相位信息,才能进一步做近-远场变换。

图4   天线近-远场的电磁仿真图

传统近场OTA测量技术步骤是首先测量包围系统近场辐射面上电磁波场值幅度、相位大小,然后进行近-远场变换(NF-FF)得到远场数据。近-远场变换需要知道近场辐射面上所有的幅度和相位信息才能得到远场的辐射方向图,这意味着远场数据只能在近场扫描之后完成。


尽管近场扫描加上近-远场变换技术已被广泛接纳并成为一种成熟可靠的间接测量远场辐射方向图的手段,但其仍然面对着一些挑战:

1)根据3GPP 的测试标准和定义的测试指标,诸如EIRP、EIS 等指标是针对特定辐射方向进行的。如果用传统的近-远场测试手段,在进行近-远场变换前,仍然要测量全部的包围面上的幅度/相位信息才行。

2)至今为止,NF-FF 变换只针单音连续波。如何将近场测量到的5G 宽带调制信号信息变换到远场,仍然是一个开放性问题,亟待研究解决。一种解决的手段是采用中场测量方案。


辐射中场定义

辐射中场(Mid-Field,MF,)定义为待测设备和测试天线的距离在待测天线阵天线单元的远场区,但在整个天线阵的辐射近场区。在这个区域内,波束的等效全向辐射功率(EIRP)和在远场情况下相同,方向图的零点位置也同远场方向图一致。这就意味着在中场距离测得的辐射方向图和在远场条件下测得的方向图大致吻合,但在不同波束指向下的增益值与远场测得的略有不同。所以天线阵的中场距离比近场稍远,通常在

之间,也即1/8 的远场。


另外,针对毫米波终端设备的产线测试,一种“极近场”技术也有相关研究。


终端设备产线测试的特点要求测试速度快、测试设备体积小、测试结果具有一定程度的准确性等特点,对OTA 测试技术提出了更大的挑战。“极近场”测试以期在单元辐射的感应近场区(Reactive Near-Field)实现阵列的诊断与射频指标的测试。但是,由于测试探头距离待测设备距离太近,可能会对待测设备的天线产生影响,影响测试结果。“极近场”探头的设计、测试结果中各种影响因素的去嵌、测试方法与测试系统的设计等都是“极近场”测试要解决的问题,这种方法成熟度相对不高。


天线增益

什么是天线增益?

天线增益是指:在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的场强的平方之比,即功率之比,它定量地描述一个天线把输入功率集中辐射的程度。增益显然与天线方向图有密切的关系,方向图主瓣越窄,副瓣越小,增益越高。


可以这样来理解增益的物理含义------为在一定的距离上的某点处产生一定大小的信号,如果用理想的无方向性点源作为发射天线,需要100W的输入功率,而用增益为 G = 13 dB = 20 的某定向天线作为发射天线时,输入功率只需 100 / 20 = 5W . 换言之,某天线的增益,就其最大辐射方向上的辐射效果来说,与无方向性的理想点源相比,把输入功率放大的倍数。


在我们的“扇形覆盖天线”中,反射面把功率聚焦到一个方向进一步提高了增益。这里,“扇形覆盖天线” 与单个对称振子相比的增益为10log(8mW/1mW) = 9dBd。天线与对称振子相比较的增益用“dBd”表示天线与各向同性辐射器相比较的增益用“dBi”表示(3dBd = 5.17dBi)

可以这样来理解增益的物理含义------为在一定的距离上的某点处产生一定大小的信号,如果用理想的无方向性点源作为发射天线,需要100W的输入功率,而用增益为 G = 13 dB = 20 的某定向天线作为发射天线时,输入功率只需 100 / 20 = 5W . 换言之,某天线的增益,就其最大辐射方向上的辐射效果来说,与无方向性的理想点源相比,把输入功率放大的倍数。


在我们的“扇形覆盖天线”中,反射面把功率聚焦到一个方向进一步提高了增益。这里,“扇形覆盖天线” 与单个对称振子相比的增益为10log(8mW/1mW) = 9dBd。


问题:天线增益越高越好吗? 答案:天线增益越高,方向性越好,能量越集中,波瓣越窄。 增益越高,天线长度越长


天线增益计算公式

天线主瓣宽度越窄,增益越高

1)对于一般天线增益,可用近似计算公式:

2)对于抛物面天线增益,可用近似计算公式:

3)对于直立全向天线增益,可用近似计算公式 :


随着更高吞吐量应用的急剧增长,无线系统需要更高的带宽和更大的网络覆盖范围。但是,频谱分配存在许多限制,因此您必须找到适合的方法来提高频谱效率和信噪比(SNR)。多路输入多路输出(MIMO)和波束赋形等多天线技术可帮助您实现分集、多路复用和天线增益,从而提高频谱效率和信噪比(SNR)。


测试天线增益差距的方法 - 案例分享

使用KEYSIGHT信号源N5172B频谱仪E4440A简易测试天线增益差距的方法


天线是射频通讯中进行互相通讯的关键组件,无线电设备中用来发射或接收电磁波的组件。天线需要把传输线上传播的射频信号,变换成在自由空间中传播的电磁波。可见天线对于通信系统的重要性,之前使用网络分析仪测试过433MHz天线的驻波和阻抗,通过驻波和阻抗来了解天线的反射系数,选择驻波更低的天线进行实际产品测试。长短两组天线的VSWR驻波都非常不错,大约1.2~1.3,但是实测的时候却表现完全不同的效果,短一点的天线测试传输距离很差。


驻波只是表征了天线的反射系数,不能表示增益的大小,一样的驻波下,增益越大,传输的距离就越远。一般定向天线的增益会大于全向天线,因为能量集中朝向一个方向发射。


本次使用的都是全向天线,天线的增益怎么测试呢?线增益的定义为在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比,这需要有OTA天线暗室进行测试,成本比较高。怎么能使用手边常用的仪器对两组天线进行一个基本的评估呢?

天线增益测试方案

一般搞射频通讯的都离不开频谱分析仪(信号分析仪)、信号源、网络分析仪三大仪器,如果手边有频谱仪和信号源,就可以使用频谱仪和信号源进行简答的摸底测试。


首先,使用信号源N5172B和频谱仪进行测试,打开仪器,安装两只天线到频谱仪和信号源的接口上。设置信号源发射频率为通讯频率433MHz,设置发射功率为0dBm。设置频谱仪的接收频率为433MHz,扫描宽度50MHz。


按下RF ON发射信号,通过信号源的天线发射信号出来,下方频谱仪的天线会感应到电磁波。因为射频信号经过空间耦合,一定会有传输的衰减,通过测试一组短的天线发现,0dBm的发射功率,频谱仪接收到的功率为-41.5dBm,衰减了41.5dB。通过-30dBm,-20dBm,-10dBm,﹢10dBm多组功率测量,大约的接收功率都是衰减了41dB左右。


接下来更换另一组长一点的天线,0dBm的发射功率,频谱仪接收到的功率为-16.59dBm,衰减了大约17dB。设置-30dBm,-20dBm,-10dBm,﹢10dBm多组功率测量,都是衰减了大约17dB。


由此可见,长的一组天线增益更大,虽然没有OTA天线暗室标定天线的绝对增益,但是可以摸底了解到长的一组天线比短的一组增益大41dB-17dB=24dB。

IC设计中常用的电磁场仿真软件Pathwave RFPro 3D电磁仿真链路选件可以使用第三方 Ansys HFSS FEM 仿真器。




技术资料,数据手册,3D模型库,原理图,PCB封装文件,选型指南来源平台:世强硬创平台www.sekorm.com
现货商城,价格查询,交期查询,订货,现货采购,在线购买,样品申请渠道:世强硬创平台电子商城www.sekorm.com/supply/
概念,方案,设计,选型,BOM优化,FAE技术支持,样品,加工定制,测试,量产供应服务提供:世强硬创平台www.sekorm.com
集成电路,电子元件,电子材料,电气自动化,电机,仪器全品类供应:世强硬创平台www.sekorm.com
  • +1 赞 0
  • 收藏
  • 评论 0

本文由咪猫转载自是德科技 Keysight Technologies知乎,原文标题为:天线的性能参数有哪些?,本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关研发服务和供应服务

评论

   |   

提交评论

全部评论(0

暂无评论

相关推荐

Keysight矢量网络分析仪简化测量设置,有效测量5G放大器的误差向量幅度

矢量网络分析仪(VNA)可代替信号分析仪来测量EVM,以简化测量设置,实现测量的可重复性,并在真实的负载条件下进行元件表征。Keysight的VNA进行调制失真分析和负载牵引测量,已成为深入了解功率放大器在波束成形相控阵列应用中的性能的最佳方式。

2022-08-11 -  原厂动态

是德科技使用矢量网络分析仪来简化宽带解调过程,提高测量质量

本文将介绍Keysight(是德科技)如何用矢量网络分析仪(VNA)在确保元件符合标准的同时来简化宽带解调。现代VNA信号分析的简化设置、改进的测试质量以及升级的校准和错误隔离独特地实现了真实且可重复的宽带测量。

2022-07-07 -  原厂动态

普尚(PROSUND)矢量网络分析仪选型指南

目录- SP800系列矢量网络分析仪选型指南    SP800系列矢量网络分析仪主要技术指标    订购信息与服务   

型号- SP8038P,SP8026P,E80070,SP80395P,A1050-2320,SP8030P,SP8014P,SP800,SP8002P,SP826P,SP800系列,SP826P-205,SP826P-201,SP8042B,SP8014B,SP8002B,SP850P-401,SP8027P,SP8015P,SP867P-425,SP867P-029,SP867P-423,SP80095P,SP80394P,SP8043P,80070S,SP8003P,SP826P-219,80067S,SP80205P,SP826P-217,SP800B-220,SP867P-419,SP8043B,SP8027B,SP8015B,SP8003B,E80067,50061MM,SP850P-417,SP8002A01,E80050,SP8008P,SP820B,SP850P-419,SP8036P,SP8012P,SP800B-015,SP8008B,SP800B-014,SP800B-013,SP800B-012,SP800B-011,SP800B-010,SP826P-224,SP800B-250,SP826P-222,SP850P-423,SP850P-422,SP8037P,SP8041B,SP850P-425,SP850P-029,SP867P-401,SP80097P,SP800B-009,SP8025P,SP800B-008,SP8013P,SP8001P,SP800B-004,SP800P-010,SP80207P,SP809B-409,SP867P,SP8001B,SP800P-015,SP809B-002,SP800P-016,SP800P-017,SP800P-018,SP800P-011,SP800P-012,SP809B-003,SP800P-013,SP809B-004,SP8001A,SP8013B,SP800P-014,SP8018P,SP8006P,SP80092P,67061MM,SP8046P,SP80202P,SP8034P,SP850B,SP8018B,SP826P-401,SP850P,E80035,SP867P-224,SP8007P,SP850P-201,35061MM,SP850P-205,SP8019P,A1026-2327,80050S,SP8035P,SP826P-417,SP800B-422,SP8019B,SP800B-420,80035S,SP867P-219,SP8003A01,SP8028P,SP8016P,SP8004P,SP850P-219,SP850P-217,SP826P-419,SP8044P,SP8016A,SP800B-452,SP826P-425,SP800B-450,SP826P-422,SP826P-029,SP826P-423,SP8020B,SP8016B,SP850P-222,SP809B,SP8004B,SP8029P,SP867P-201,SP8017P,SP850P-224,SP8005P,SP867P-205,SP80392P,SP8021P,SP8045P,SP8029B,SP809B-209,SP8005B

2023/7/7  - 普尚  - 选型指南 代理服务 技术支持 采购服务

TD3619D矢量网络分析仪 100kHz--8.5GHz 二端口或四端口

描述- TD3619D矢量网络分析仪是一款高性能设备,适用于100 kHz至8.5 GHz频率范围的测试。它具备中文或英文操作界面,支持2/4端口测试,并配备Windows 7操作系统和触摸屏。该仪器可用于测量RF器件的各种特性,如插入损耗、衰减、隔离、增益等,并提供多种校准方式和外部接口。

型号- TD3619D

2022/9/14  - 天大  - 数据手册

【经验】使用矢量网络分析仪检测Keysight的433MHz天线性能

世强硬创电商开放实验室是一个免费服务于电子设计、电子研发工程师的实验室,拥有完善的测试方案,丰富的软硬件资源,配备了大量高端的仪器和设备。今天我们使用实验室的矢量网络分析仪E5071C来检测Keysight的一款433MHz天线。

2022-09-08 -  设计经验

如何使用矢量网络分析仪?

矢量网络分析仪(VNA)用于表征射频器件和网络。除了测量基本的S参数(如S11、S21等)外,现代VNA还能进行复杂的矢量测量,包括幅度和相位响应,从而提供更全面的器件性能分析。对于高频和毫米波应用,VNA能够提供高精度测量,并支持滤波器、放大器等关键射频元件的表征。

2024-06-19 -  技术探讨

免费使用E5071C矢量网络分析仪

世强深圳实验室配备是德科技(Keysight)E5071C矢量网络分析仪,覆盖9 kHz到6.5 GHz的宽频率范围。点击预约,支持到场/视频直播测试,资深专家全程指导。

服务提供商  -  KEYSIGHT 进入

矢量网络分析仪 TECHNICAL OVERVIEW

描述- 是德科技提供多种矢量网络分析仪(VNA),涵盖不同频率范围、性能和功能,满足不同测量需求。资料详细介绍了PNA、ENA、PXI VNA、精简系列VNA和FieldFox系列VNA等产品的特性、应用和性能对比,包括有源器件、无源器件、通用教育、制造业和高速串行互连分析等领域的应用。此外,还介绍了VNA仿真器、相关附件和升级服务。

型号- PNA,N5241B,N5225B,P502XB 系列,N5249B,872XE,8714B,N9950A,8714C,N338XA,E5080B,E5080A,M937XA,N9918B,4194A,PXI VNA,85541B,N9951A,N1930XB,S97011B,N5242B,N5230A,8753E,P93XXB,N5230C,3577B,P937XA,8753C,P937XB,8753D,8753A,N524X,8753B,N522XA,8713C,N522XB,8713B,872XC,8510X,872XD,872XA,4395A,872XB,P502XB,P502XA,E5063A,8714ET,8714ES,PNA-L 系列,PNA 系列,N5231B,8530A,N5295AX,N5239B,N5227B,85309B,E835XA,E5070B,E5070A,N9916B,3577A,4192A,S94050B,N991XB,S96011B,N991XA,N5232B,P93XX,E836XC,N5244B,E836XB,N522X,S94051B,N9917B,PXI VNA 系列,N5221B,PNA-X,N9914B,PNA-L,N5245B,FIELDFOX 系列,8719E,8719C,8719D,E836XA,8719A,8719B,E5072A,N992XA,872XET,872XES,8712ET,N5290A,8712ES,N9915B,P500XB,P502XA 系列,N5234B,P500XA,P50XX,N5222B,N5253EX,N524XA,N524XB,M981XAS,N526BA,E5071C,E5071B,E5071A,ENA,85320B,85320A,8360B,N9952A,N5291A,N5251A,8753,N5247B,8510A,8752B,N5235B,8752C,8510C,N99XXA,S95011B,N1501A,8510B,8752A,N99XXB,8712B,8712C,N5293AX,S93011B,ENA 系列,8753 系列,E5062A,N5292A,8753ET,8753ES,N5252A,N5264B,N9913B,P938XB,8751A,N5224B,8711C,8711A,N523XA,8711B,N523XB,PNA-X 系列,M980XA,FIELDFOX,P50XXA,P50XXB,E5061B,8719ES,E5061A,8719ET,4195A

2021年10月11日  - KEYSIGHT  - 商品及供应商介绍

【选型】Keysight(是德科技)网络分析仪产品选型指南(中文)

目录- 网络分析仪产品简介    通用网络分析仪    ENA和精简系列USB矢量网络分析仪    PNA系列矢量网络分析仪    多端口测试仪/射频和微波固态开关/PXI多端口网络分析仪    PNA毫米波系统    手持式微波分析仪   

型号- M9165B,N5221B,PNA-X,N5241B,N9914B,N5225B,N5245B,N5249B,N9950A,E5080B,E5080A,E5092A,E5072A,N9918B,N9951A,N5290A,N5242B,P916XB,P937XA,P916XA,N5234B,N5222B,M9808A,M9804A,P502XA,E5071C,E5063A,M9375A,P937XA 系列,PNA-L 系列,N9952A,N5231B,PNA 系列,P9165B,P9375A,N5247B,N5235B,N5239B,N5227B,P9370A,M9164B,P9164B,N5232B,N9913B,N5224B,P5008A,N5244B,M9019A,N529XA,PNA-X 系列,M980XA,P50XXA,P5024A,P5028A,E5061B

2020年9月11日  - KEYSIGHT  - 选型指南

Keysight E5081A ENA-X矢量网络分析仪,集多种测量功能,可完整验证有源器件性能

全新的Keysight E5081A ENA-X矢量网络分析仪集多种测量功能于一台仪器中,以更快的速度、更大的灵活性、更低的成本进行有源器件全面的表征。

2024-06-14 -  产品

【经验】矢量网络分析仪E5063A的参考线设置功能与作用介绍

对于天线生产来说,天线端口的VSWR测试是必须的,根据测试得到的数据来判断是否满足要求。如果每次都通过眼睛读数据,第一是费事,第二是对大量生产来说费时。对于这个问题,Keysight的矢量网络分析仪E5063A提供一个参考线设置的功能来解决这个问题,根据文中的步骤,我们就可以设置参考测试线。

2019-09-29 -  设计经验

E5080B ENA系列矢量网络分析仪

描述- 本资料详细介绍了Keysight E5080B ENA系列矢量网络分析仪(VNA)的配置、选项、附件和兼容外围设备。资料涵盖了测试集选项、频谱分析硬件、内部偏置T型接头、硬件选项、应用软件、校准选项和附件。此外,还提供了关于脉冲调制硬件、高稳定性时间基准、内部偏置T型接头、模拟输入和输出、设备测试I/O、应用I/O、E5092A可配置多端口测试集、电缆和适配器选项、测量附件、校准套件、波导测量、1.85 mm、2.4 mm、K型连接器(2.92 mm)、3.5 mm或SMA连接器、N型连接器和7 mm连接器的详细信息。

型号- 85133E,85133D,E5080B-172,85052B,11878A,85133F,85052C,N4690,N4421B-K67,85052D,85133H,E5080B-175,85090,85092C,N4693D,N4421AK20,E5080B-290,N7553A,E5092A-1A7,E5080B,E5080B-4N0,N6315A,E5080B-A6J,E5080B-4N2,KS8400A,85133C,85134F,N7552A,85134E,11853A,85053B,85134H,N7550,85033E-400,E5080B-442,E5080B-440,S96025A,85093C,N4694D,K11644A,85032F-100,85032F-500,N6314A,E5080B-4M2,Q11644A,E5080B-4M0,85054B,11525A,85054D,N4430,S94702A,N7555A,E5092A-20C,E5080B-1A7,E5080B-2D0,E5080B-2L0,E5080B-4P2,S96011A,E5080B-4P0,U11644A,E5092A-A6J,E5080B-460,P11644A,S96007A,85033E-300,11524A,E5080B-182,E5080B-462,N4696D,E5080B-181,11904C,11904D,11904A,11904B,N7554A,E5092A-20B,S96090A,S96010A,S96086A,11904S,85055A,E5080B-2K0,E5080B-097,85056D,E5080B-492,E5080B-096,E5080B-095,E5080B-490,E5080B-094,85032F,E5080B-098,N755XA,E5080B-093,N4697J,E5080B-092,N4697K,E5080B-091,E5080B-090,E5080B-1CP,E5080B-1CM,R11644A,N4431D,E5080B-2N0,85056A,E5080B-240,S96029A,85033E,85130D,85130C,E5092A-020,85130F,85130E,E5080B-120,85130G,S94701A,85032F-300,85033E-200,N4690D,E5080B-2M0,S96084A,85057B,N7551A,85131C,85056KE01,85131E,85131D,E5080B-2P0,85050B,85131F,85050C,85050D,85131H,N4691D,X11644A,E5080B-4D2,E5092A-1CP,E5080B-4D0,E5092A-09B,E5092A-1CN,E5092A-1CM,E5080B-4L2,85058B,E5080B-4L0,E5092A-09A,85056KE02,S96083A,85058E,85033E-500,E5080B-140,E5080B-260,N7550A,85051B,N4419AK20,Z5623A-K20,E5080B-022,E5080B-021,85032F-200,N4692D,85033E-100,85058V,E5080B-4K2,E5080B-1E5,E5080B-XXX,E5092A-08C,K281C,E5080B-4K0,S96082A

November 14, 2019  - KEYSIGHT  - 用户指南

E5071C矢量网络分析仪是大规模无源元器件测试的理想解决方案,具有出色的测量性能,有助于提高测试吞吐量

E5071C矢量网络分析仪是大规模无源元器件测试的理想解决方案。E5071C矢量网络分析仪具有出色的测量性能,有助于提高测试吞吐量,尤其是与E5092A多端口测试仪配合使用时,可以大幅提高生产能力。灵活的多端口设置可以显著缩短测试时间。TDR测量原理时域反射计TDR是最常用的测量传输线特征阻抗的仪器,它是利用时域反射的原理进行特性阻抗的测量。

2024-05-31 -  产品

矢量网络分析仪S参数的常见问题

这是一篇关于网络分析仪的宝藏文章,回答了射频工程师在使用网络分析仪过程中经常遇到的问题。另外,今天我们还奉献了是德科技最新的大片-PCB设计的经验法则,为大家奉献这个月的饕餮盛宴。不可错过!

2023-10-19 -  设计经验

【产品】N9914A-211全双端口S参数矢量网络分析仪选件,助力FieldFox网络分析仪提供最精确的全双端口校准

是德科技推出的基本型 N9914A 组合分析仪包括一个电缆和天线分析仪。订购选件 211,即可获得全部 4 个 S 参数——正向和逆向(S11、S21、S12、S22)并执行全双端口校准。FieldFox 网络分析仪可提供最精确的全双端口校准。选件 211 还在矢量电压表模式中添加了 A/B 和 B/A 测量功能(作为选件 308)。

2019-10-29 -  新产品
展开更多

电子商城

查看更多

品牌:鼎阳科技

品类:信号源线缆

价格:¥98.0000

现货: 30

品牌:鼎阳科技

品类:信号源/万用表机架套件

价格:¥968.0000

现货: 10

品牌:鼎阳科技

品类:信号源/万用表机架套件

价格:

现货: 10

品牌:鼎阳科技

品类:频谱仪机架套件

价格:¥3,028.0000

现货: 10

品牌:利利普

品类:示波器

价格:

现货: 10

品牌:利利普

品类:示波器

价格:

现货: 10

品牌:利利普

品类:手持频谱分析仪

价格:

现货: 5

品牌:利利普

品类:双通道信号源

价格:

现货: 5

品牌:利利普

品类:单通道信号源

价格:

现货: 5

品牌:利利普

品类:双通道信号源

价格:

现货: 5

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

现货市场

查看更多

品牌:KEYSIGHT

品类:Spectrum analyzer

价格:¥11,094.9050

现货:3

品牌:KEYSIGHT

品类:频谱仪配件

价格:¥8,702.6950

现货:3

品牌:KEYSIGHT

品类:Spectrum analyzer

价格:¥7,471.4493

现货:1

品牌:KEYSIGHT

品类:Network Analyzer

价格:¥309,494.2310

现货:1

品牌:Rigol

品类:射频信号源

价格:¥26,446.8357

现货:1

品牌:Rigol

品类:射频信号源

价格:¥76,797.0328

现货:1

品牌:Rigol

品类:射频信号源

价格:¥40,145.4557

现货:1

品牌:Rigol

品类:射频信号源

价格:¥92,773.4586

现货:1

品牌:KEYSIGHT

品类:Digital Volt Meter

价格:¥300.0000

现货:105

品牌:KEYSIGHT

品类:Software License

价格:¥5,885.8626

现货:92

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

品牌:

品类:

价格:

现货:

服务

查看更多

网络分析仪/频谱仪/信号分析仪/无线综测仪/信号发生器租赁

提供是德(Keysight),罗德(R&S)测试测量仪器租赁服务,包括网络分析仪、无线通讯综测仪、信号发生器、频谱分析仪信号分析仪、电源等仪器租赁服务;租赁费用按月计算,租赁价格按仪器配置而定。

提交需求>

网络分析仪/频谱仪/信号分析仪/无线综测仪/信号发生器维修

朗能泛亚提供是德(Keysight),罗德(R&S)等品牌的测试测量仪器维修服务,包括网络分析仪、无线通讯综测仪、信号发生器、频谱分析仪信号分析仪、电源等仪器维修,支持一台仪器即可维修。

提交需求>

查看更多

授权代理品牌:接插件及结构件

查看更多

授权代理品牌:部件、组件及配件

查看更多

授权代理品牌:电源及模块

查看更多

授权代理品牌:电子材料

查看更多

授权代理品牌:仪器仪表及测试配组件

查看更多

授权代理品牌:电工工具及材料

查看更多

授权代理品牌:机械电子元件

查看更多

授权代理品牌:加工与定制

世强和原厂的技术专家将在一个工作日内解答,帮助您快速完成研发及采购。
我要提问

954668/400-830-1766(工作日 9:00-18:00)

service@sekorm.com

研发客服
商务客服
服务热线

联系我们

954668/400-830-1766(工作日 9:00-18:00)

service@sekorm.com

投诉与建议

E-mail:claim@sekorm.com

商务合作

E-mail:contact@sekorm.com

收藏
收藏当前页面